
Continuity and Robustness of Programs
Seminar: Robustness of Hardware and Software Systems

Prof. Dr.-Ing. Jan Reineke

Markus Schneider

Saarbrücken, December 12, 2013

1 / 26

Motivation

I For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.

I in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

I in mobile devices: they use slightly stale satellite data
I in randomized and approximate algorithms for performance

gains
I in differential privacy to guarantee privacy in statistical

databases

I This uncertainty can be probabilistic or nondeterministic.

−→ We will introduce a concept of continuity for programs.

2 / 26

Motivation

I For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.

I in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

I in mobile devices: they use slightly stale satellite data
I in randomized and approximate algorithms for performance

gains
I in differential privacy to guarantee privacy in statistical

databases

I This uncertainty can be probabilistic or nondeterministic.

−→ We will introduce a concept of continuity for programs.

2 / 26

Motivation

I For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.

I in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

I in mobile devices: they use slightly stale satellite data
I in randomized and approximate algorithms for performance

gains
I in differential privacy to guarantee privacy in statistical

databases

I This uncertainty can be probabilistic or nondeterministic.

−→ We will introduce a concept of continuity for programs.

2 / 26

Motivation

I For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.

I in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

I in mobile devices: they use slightly stale satellite data
I in randomized and approximate algorithms for performance

gains
I in differential privacy to guarantee privacy in statistical

databases

I This uncertainty can be probabilistic or nondeterministic.

−→ We will introduce a concept of continuity for programs.

2 / 26

The Challenge: Handling the Control Flow

I Conditional branching.

1: if x > 2 then
2: y := 1

2 · x
3: else
4: y := −5x + 11
5: end if

I Loops.

1: while W 6= ∅ do
2: choose edge (v ,w) ∈ G such that d [w] is minimal
3: remove (v ,w) from W
4: if d [w] + G [w , v] < d [v] then
5: d [v] := d [w] + G [w , v]
6: end if
7: end while

−→ Control flow makes an automated continuity analysis difficult.

3 / 26

The Challenge: Handling the Control Flow

I Conditional branching.

1: if x > 2 then
2: y := 1

2 · x
3: else
4: y := −5x + 11
5: end if

I Loops.

1: while W 6= ∅ do
2: choose edge (v ,w) ∈ G such that d [w] is minimal
3: remove (v ,w) from W
4: if d [w] + G [w , v] < d [v] then
5: d [v] := d [w] + G [w , v]
6: end if
7: end while

−→ Control flow makes an automated continuity analysis difficult.

3 / 26

The Challenge: Handling the Control Flow

I Conditional branching.

1: if x > 2 then
2: y := 1

2 · x
3: else
4: y := −5x + 11
5: end if

I Loops.

1: while W 6= ∅ do
2: choose edge (v ,w) ∈ G such that d [w] is minimal
3: remove (v ,w) from W
4: if d [w] + G [w , v] < d [v] then
5: d [v] := d [w] + G [w , v]
6: end if
7: end while

−→ Control flow makes an automated continuity analysis difficult.

3 / 26

A Necessary Tool: Metrics

I We consider a program as the mathematical function that it
implements.

I To be able to talk about continuity we have to define a
metric for each datatype.

I Examples of metrics:
I integer and real, associated with the Euclidean metric

d(x , y) = |x − y |

I integer arrays and real arrays, associated with the maximum
norm

d(A1,A2) = L∞(A1,A2) = max
i

(|A1[i]− A2[i]|)

4 / 26

A Necessary Tool: Metrics

I We consider a program as the mathematical function that it
implements.

I To be able to talk about continuity we have to define a
metric for each datatype.

I Examples of metrics:
I integer and real, associated with the Euclidean metric

d(x , y) = |x − y |

I integer arrays and real arrays, associated with the maximum
norm

d(A1,A2) = L∞(A1,A2) = max
i

(|A1[i]− A2[i]|)

4 / 26

A Necessary Tool: Metrics

I We consider a program as the mathematical function that it
implements.

I To be able to talk about continuity we have to define a
metric for each datatype.

I Examples of metrics:
I integer and real, associated with the Euclidean metric

d(x , y) = |x − y |

I integer arrays and real arrays, associated with the maximum
norm

d(A1,A2) = L∞(A1,A2) = max
i

(|A1[i]− A2[i]|)

4 / 26

Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

Given two states σ and σ′ ∈ Σ(P) and any ε > 0, we define:

I σ and σ′ are ε-close with respect to variable xi and write

σ ≈ε,i σ′ :⇔ d(σ(i), σ′(i)) < ε

I σ′ is an ε-perturbation of σ with respect to variable xi and
write

σ ≡ε,i σ′ :⇔ σ ≈ε,i σ′ ∧ ∀j 6= i : σ(j) = σ′(j)

5 / 26

Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

Given two states σ and σ′ ∈ Σ(P) and any ε > 0, we define:

I σ and σ′ are ε-close with respect to variable xi and write

σ ≈ε,i σ′ :⇔ d(σ(i), σ′(i)) < ε

I σ′ is an ε-perturbation of σ with respect to variable xi and
write

σ ≡ε,i σ′ :⇔ σ ≈ε,i σ′ ∧ ∀j 6= i : σ(j) = σ′(j)

5 / 26

Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

Given two states σ and σ′ ∈ Σ(P) and any ε > 0, we define:

I σ and σ′ are ε-close with respect to variable xi and write

σ ≈ε,i σ′ :⇔ d(σ(i), σ′(i)) < ε

I σ′ is an ε-perturbation of σ with respect to variable xi and
write

σ ≡ε,i σ′ :⇔ σ ≈ε,i σ′ ∧ ∀j 6= i : σ(j) = σ′(j)

5 / 26

Overview

Continuity of Programs and Continuity Judgements

Lipschitz Continuity of Programs

Verifying the Robustness of a Program

6 / 26

Overview

Continuity of Programs and Continuity Judgements

Lipschitz Continuity of Programs

Verifying the Robustness of a Program

7 / 26

Continuity of a Program

Well-known ε-δ-Definition of Continuous Functions:
A function f : D → R is continuous at a point x ∈ D, if

∀ε > 0 ∃δ > 0 ∀y ∈ D : |x − y | < δ ⇒ |f (x)− f (y)| < ε

Continuity of a Program:
A program P is continuous at a state σ with respect to an input
variable xi and an output variable xj , if

∀ε > 0 ∃δ > 0 ∀σ′ ∈ Σ(P) : σ ≡δ,i σ′ ⇒ JPK(σ) ≈ε,j JPK(σ′)

8 / 26

Continuity of a Program

Well-known ε-δ-Definition of Continuous Functions:
A function f : D → R is continuous at a point x ∈ D, if

∀ε > 0 ∃δ > 0 ∀y ∈ D : |x − y | < δ ⇒ |f (x)− f (y)| < ε

Continuity of a Program:
A program P is continuous at a state σ with respect to an input
variable xi and an output variable xj , if

∀ε > 0 ∃δ > 0 ∀σ′ ∈ Σ(P) : σ ≡δ,i σ′ ⇒ JPK(σ) ≈ε,j JPK(σ′)

8 / 26

Verifying Continuity (1)

I Goal: establish an automated framework for proving a
program to be continuous

I The analysis is
I sound (a program proven continuous is indeed continuous),
I but incomplete (a program may be continuous even if the

analysis is not able to derive this).

I Breaking down a program into its syntactic substructures we
get a set of inference rules of the style

P is skip or x := e

b ` Cont(P, In,Out)

to derive continuity judgements.

9 / 26

Verifying Continuity (1)

I Goal: establish an automated framework for proving a
program to be continuous

I The analysis is
I sound (a program proven continuous is indeed continuous),
I but incomplete (a program may be continuous even if the

analysis is not able to derive this).

I Breaking down a program into its syntactic substructures we
get a set of inference rules of the style

P is skip or x := e

b ` Cont(P, In,Out)

to derive continuity judgements.

9 / 26

Verifying Continuity (1)

I Goal: establish an automated framework for proving a
program to be continuous

I The analysis is
I sound (a program proven continuous is indeed continuous),
I but incomplete (a program may be continuous even if the

analysis is not able to derive this).

I Breaking down a program into its syntactic substructures we
get a set of inference rules of the style

P is skip or x := e

b ` Cont(P, In,Out)

to derive continuity judgements.

9 / 26

Verifying Continuity (2)

Disallowing divisions the critical statements are conditional
branches.

I The branches have to be output-equivalent at the decision
boundary of the branch.

10 / 26

Overview

Continuity of Programs and Continuity Judgements

Lipschitz Continuity of Programs

Verifying the Robustness of a Program

11 / 26

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D → R is Lipschitz continuous, if there is a constant
K so that any ±ε-change to x can change f (x) at most by ±K · ε.

12 / 26

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D → R is Lipschitz continuous, if there is a constant
K so that any ±ε-change to x can change f (x) at most by ±K · ε.

Lipschitz Continuity of a Program:
Let K : N→ R≥0 be a function that takes the size of variable xi as
its input. A program P is K -Lipschitz with respect to an input
variable xi and an output variable xj , if ∀σ, σ′ ∈ Σ(P) and ∀ε > 0

σ ≡ε,i σ′ ⇒ JPK(σ) ≈K ·ε,j JPK(σ′)

12 / 26

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D → R is Lipschitz continuous, if there is a constant
K so that any ±ε-change to x can change f (x) at most by ±K · ε.

Lipschitz Continuity of a Program:
Let K : N→ R≥0 be a function that takes the size of variable xi as
its input. A program P is K -Lipschitz with respect to an input
variable xi and an output variable xj , if ∀σ, σ′ ∈ Σ(P) and ∀ε > 0

σ ≡ε,i σ′ ⇒ JPK(σ) ≈K ·ε,j JPK(σ′)

where K only depends on the size of σ(i). The size of a variable v
is defined as

I ||v || := 1, if v is an integer or a real,

I ||v || := N, if v is an array of size N.

12 / 26

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D → R is Lipschitz continuous, if there is a constant
K so that any ±ε-change to x can change f (x) at most by ±K · ε.

Lipschitz Continuity of a Program:
Let K : N→ R≥0 be a function that takes the size of variable xi as
its input. A program P is K -Lipschitz with respect to an input
variable xi and an output variable xj , if ∀σ, σ′ ∈ Σ(P) and ∀ε > 0

σ ≡ε,i σ′ ∧
(
||σ(i)|| = ||σ′(i)||

)
⇒ JPK(σ) ≈K ·ε,j JPK(σ′)

where K only depends on the size of σ(i). The size of a variable v
is defined as

I ||v || := 1, if v is an integer or a real,

I ||v || := N, if v is an array of size N.

12 / 26

Example (1): Sorting Algorithms

I Sort1 maps an array to its sorted permutation.
Example:

Sort1(6, 3, 3, 1) = (1, 3, 3, 6)

Sort1(6, 3 + ε, 3, 1) = (1, 3, 3 + ε, 6)

Perturbing each item of an array at most by ±ε changes each
item of the output array at most by ±ε.

I Sort2 maps an array to the list of indices giving the order.
Example:

Sort2(6, 3, 3, 1) = (4, 2, 3, 1)

Sort2(6, 3 + ε, 3, 1) = (4, 3, 2, 1)

Perturbing one item by ±ε can already lead to unbounded
changes in the corresponding outputs.

→ Sort1 is Lipschitz continuous, Sort2 is not even continuous.

13 / 26

Example (1): Sorting Algorithms

I Sort1 maps an array to its sorted permutation.
Example:

Sort1(6, 3, 3, 1) = (1, 3, 3, 6)

Sort1(6, 3 + ε, 3, 1) = (1, 3, 3 + ε, 6)

Perturbing each item of an array at most by ±ε changes each
item of the output array at most by ±ε.

I Sort2 maps an array to the list of indices giving the order.
Example:

Sort2(6, 3, 3, 1) = (4, 2, 3, 1)

Sort2(6, 3 + ε, 3, 1) = (4, 3, 2, 1)

Perturbing one item by ±ε can already lead to unbounded
changes in the corresponding outputs.

→ Sort1 is Lipschitz continuous, Sort2 is not even continuous.

13 / 26

Example (1): Sorting Algorithms

I Sort1 maps an array to its sorted permutation.
Example:

Sort1(6, 3, 3, 1) = (1, 3, 3, 6)

Sort1(6, 3 + ε, 3, 1) = (1, 3, 3 + ε, 6)

Perturbing each item of an array at most by ±ε changes each
item of the output array at most by ±ε.

I Sort2 maps an array to the list of indices giving the order.
Example:

Sort2(6, 3, 3, 1) = (4, 2, 3, 1)

Sort2(6, 3 + ε, 3, 1) = (4, 3, 2, 1)

Perturbing one item by ±ε can already lead to unbounded
changes in the corresponding outputs.

→ Sort1 is Lipschitz continuous, Sort2 is not even continuous.

13 / 26

Example (1): Sorting Algorithms

I Sort1 maps an array to its sorted permutation.
Example:

Sort1(6, 3, 3, 1) = (1, 3, 3, 6)

Sort1(6, 3 + ε, 3, 1) = (1, 3, 3 + ε, 6)

Perturbing each item of an array at most by ±ε changes each
item of the output array at most by ±ε.

I Sort2 maps an array to the list of indices giving the order.
Example:

Sort2(6, 3, 3, 1) = (4, 2, 3, 1)

Sort2(6, 3 + ε, 3, 1) = (4, 3, 2, 1)

Perturbing one item by ±ε can already lead to unbounded
changes in the corresponding outputs.

→ Sort1 is Lipschitz continuous, Sort2 is not even continuous.

13 / 26

Example (1): Sorting Algorithms

I Sort1 maps an array to its sorted permutation.
Example:

Sort1(6, 3, 3, 1) = (1, 3, 3, 6)

Sort1(6, 3 + ε, 3, 1) = (1, 3, 3 + ε, 6)

Perturbing each item of an array at most by ±ε changes each
item of the output array at most by ±ε.

I Sort2 maps an array to the list of indices giving the order.
Example:

Sort2(6, 3, 3, 1) = (4, 2, 3, 1)

Sort2(6, 3 + ε, 3, 1) = (4, 3, 2, 1)

Perturbing one item by ±ε can already lead to unbounded
changes in the corresponding outputs.

→ Sort1 is Lipschitz continuous, Sort2 is not even continuous.
13 / 26

Example (2): Shortest Path Algorithms

I SP1 maps a graph to its minimal distance array d .

I SP2 maps a graph to an array containing the shortest paths.

→ SP1 is continuous, SP2 is not.

We have to define the output of our program exactly!

14 / 26

Example (2): Shortest Path Algorithms

I SP1 maps a graph to its minimal distance array d .

I SP2 maps a graph to an array containing the shortest paths.

→ SP1 is continuous, SP2 is not.

We have to define the output of our program exactly!

14 / 26

Robustness of Programs

For Lipschitz continuous programs we can state:

I The output changes proportionally to any change on the
inputs.

I The upper bound K · ε on the output changes does not
depend on the values of the input variables.

−→ The program behaves predictably on uncertain inputs.

A program is called robust, if it is K -Lipschitz for some
Lipschitz constant K .

15 / 26

Robustness of Programs

For Lipschitz continuous programs we can state:

I The output changes proportionally to any change on the
inputs.

I The upper bound K · ε on the output changes does not
depend on the values of the input variables.

−→ The program behaves predictably on uncertain inputs.

A program is called robust, if it is K -Lipschitz for some
Lipschitz constant K .

15 / 26

Robustness of Programs

For Lipschitz continuous programs we can state:

I The output changes proportionally to any change on the
inputs.

I The upper bound K · ε on the output changes does not
depend on the values of the input variables.

−→ The program behaves predictably on uncertain inputs.

A program is called robust, if it is K -Lipschitz for some
Lipschitz constant K .

15 / 26

Robustness of Programs

For Lipschitz continuous programs we can state:

I The output changes proportionally to any change on the
inputs.

I The upper bound K · ε on the output changes does not
depend on the values of the input variables.

−→ The program behaves predictably on uncertain inputs.

A program is called robust, if it is K -Lipschitz for some
Lipschitz constant K .

15 / 26

Overview

Continuity of Programs and Continuity Judgements

Lipschitz Continuity of Programs

Verifying the Robustness of a Program

16 / 26

Our Two Step Procedure

The sequence of assignment or skip-statements that P executes
on some input is called a control flow path of P.

Let xj be the input and xi be the output variable of our program.

Lipschitz continuity of a program is proven by establishing that

1. P is continuous in all states w.r.t. input xj and output xi .

2. Each control flow path of P is K -Lipschitz w.r.t. input xj and
output xi .

17 / 26

Our Two Step Procedure

The sequence of assignment or skip-statements that P executes
on some input is called a control flow path of P.

Let xj be the input and xi be the output variable of our program.

Lipschitz continuity of a program is proven by establishing that

1. P is continuous in all states w.r.t. input xj and output xi .

2. Each control flow path of P is K -Lipschitz w.r.t. input xj and
output xi .

17 / 26

Our Two Step Procedure

The sequence of assignment or skip-statements that P executes
on some input is called a control flow path of P.

Let xj be the input and xi be the output variable of our program.

Lipschitz continuity of a program is proven by establishing that

1. P is continuous in all states w.r.t. input xj and output xi .

2. Each control flow path of P is K -Lipschitz w.r.t. input xj and
output xi .

17 / 26

The Idea for Finding Lipschitz Constants

The remaining task is to find out the Lipschitz constants for each
control flow path (if there exists one).

Our approach:

I Compute Lipschitz matrices containing upper bounds on the
slope of any computation that can be carried out in a control
flow path of P.

18 / 26

The Idea for Finding Lipschitz Constants

The remaining task is to find out the Lipschitz constants for each
control flow path (if there exists one).

Our approach:

I Compute Lipschitz matrices containing upper bounds on the
slope of any computation that can be carried out in a control
flow path of P.

18 / 26

Lipschitz Matrices

Let program P have n variables x1, .., xn.

I A Lipschitz matrix is a n × n-matrix with functions
K : N→ R≥0 as its matrix elements.

I We will derive a set J of Lipschitz matrices.

I A judgement P : J means:
For each control flow path C in P and each xi , xj there is a
J ∈ J such that C is Jij -Lipschitz in input xj and output xi .

Note the similarity to the Jacobian:

I If the program represents a differentiable function, Jij is an
upper bound on |∂xi∂xj

|.

19 / 26

Lipschitz Matrices

Let program P have n variables x1, .., xn.

I A Lipschitz matrix is a n × n-matrix with functions
K : N→ R≥0 as its matrix elements.

I We will derive a set J of Lipschitz matrices.

I A judgement P : J means:
For each control flow path C in P and each xi , xj there is a
J ∈ J such that C is Jij -Lipschitz in input xj and output xi .

Note the similarity to the Jacobian:

I If the program represents a differentiable function, Jij is an
upper bound on |∂xi∂xj

|.

19 / 26

Lipschitz Matrices

Let program P have n variables x1, .., xn.

I A Lipschitz matrix is a n × n-matrix with functions
K : N→ R≥0 as its matrix elements.

I We will derive a set J of Lipschitz matrices.

I A judgement P : J means:
For each control flow path C in P and each xi , xj there is a
J ∈ J such that C is Jij -Lipschitz in input xj and output xi .

Note the similarity to the Jacobian:

I If the program represents a differentiable function, Jij is an
upper bound on |∂xi∂xj

|.

19 / 26

Merging of Lipschitz Matrices

I Given any judgement P : J , we can merge two arbitrary
Lipschitz matrices A and B ∈ J . Formally, we can infer

P : (J \ {A,B}) ∪ {A t B}

where the merge operation t is defined as

(A t B)ij = max(Aij ,Bij) ∀i , j ∈ {1, .., n}

20 / 26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {I}

weaken
P : J J1, J2 ∈ J

P : (J \ {J1, J2}) ∪ {J1 t J2}

ITE
P1 : J1 P2 : J2

(if B then P1 else P2) : J1 ∪ J2

sequence
P1 : J1 P2 : J2

(P1;P2) : {J2 · J1 | J1 ∈ J1, J2 ∈ J2}

while

P = while b do R R : J Bound+(P,M)
∀J ∈ J ∀i , j : Jij ≥ 1 ∨ Jij = 0

P : {J1 · J2 · . . . · JM | Ji ∈ J }

21 / 26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {I}

weaken
P : J J1, J2 ∈ J

P : (J \ {J1, J2}) ∪ {J1 t J2}

ITE
P1 : J1 P2 : J2

(if B then P1 else P2) : J1 ∪ J2

sequence
P1 : J1 P2 : J2

(P1;P2) : {J2 · J1 | J1 ∈ J1, J2 ∈ J2}

while

P = while b do R R : J Bound+(P,M)
∀J ∈ J ∀i , j : Jij ≥ 1 ∨ Jij = 0

P : {J1 · J2 · . . . · JM | Ji ∈ J }

21 / 26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {I}

weaken
P : J J1, J2 ∈ J

P : (J \ {J1, J2}) ∪ {J1 t J2}

ITE
P1 : J1 P2 : J2

(if B then P1 else P2) : J1 ∪ J2

sequence
P1 : J1 P2 : J2

(P1;P2) : {J2 · J1 | J1 ∈ J1, J2 ∈ J2}

while

P = while b do R R : J Bound+(P,M)
∀J ∈ J ∀i , j : Jij ≥ 1 ∨ Jij = 0

P : {J1 · J2 · . . . · JM | Ji ∈ J }

21 / 26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {I}

weaken
P : J J1, J2 ∈ J

P : (J \ {J1, J2}) ∪ {J1 t J2}

ITE
P1 : J1 P2 : J2

(if B then P1 else P2) : J1 ∪ J2

sequence
P1 : J1 P2 : J2

(P1;P2) : {J2 · J1 | J1 ∈ J1, J2 ∈ J2}

while

P = while b do R R : J Bound+(P,M)
∀J ∈ J ∀i , j : Jij ≥ 1 ∨ Jij = 0

P : {J1 · J2 · . . . · JM | Ji ∈ J }

21 / 26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {I}

weaken
P : J J1, J2 ∈ J

P : (J \ {J1, J2}) ∪ {J1 t J2}

ITE
P1 : J1 P2 : J2

(if B then P1 else P2) : J1 ∪ J2

sequence
P1 : J1 P2 : J2

(P1;P2) : {J2 · J1 | J1 ∈ J1, J2 ∈ J2}

while

P = while b do R R : J Bound+(P,M)
∀J ∈ J ∀i , j : Jij ≥ 1 ∨ Jij = 0

P : {J1 · J2 · . . . · JM | Ji ∈ J }

21 / 26

Rules for Deriving Lipschitz Matrices (2)

For assignments we first define a vector ∇e whose j-th element is
an upper bound on |∂JeK

∂xj
|:

∇e(j) =

0, if e is a constant

1, if e is xj or xj [k] for some k

0, if e is xl or xl [k] for some k and l 6= j

∇a(j) +∇b(j), if e is (a + b)

∇a(j)|b|+∇b(j)|a|, if e is (a · b) and a or b is a constant

∞, otherwise

assign (xi := e) : {J} where Jkj :=

∇e(j), if k = i

1, if k = j 6= i

0, otherwise

22 / 26

Rules for Deriving Lipschitz Matrices (2)

For assignments we first define a vector ∇e whose j-th element is
an upper bound on |∂JeK

∂xj
|:

∇e(j) =

0, if e is a constant

1, if e is xj or xj [k] for some k

0, if e is xl or xl [k] for some k and l 6= j

∇a(j) +∇b(j), if e is (a + b)

∇a(j)|b|+∇b(j)|a|, if e is (a · b) and a or b is a constant

∞, otherwise

assign (xi := e) : {J} where Jkj :=

∇e(j), if k = i

1, if k = j 6= i

0, otherwise

22 / 26

Rules for Deriving Lipschitz Matrices (3)

array-assign (xi [m] := e) : {J, I}

with the same matrix J: Jkj :=

∇e(j), if k = i

1, if k = j 6= i

0, otherwise

23 / 26

Example: Dijkstra’s-Algorithm

Dijkstra(G : real array, src : int)
1: ...
2: while W 6= ∅ do
3: choose edge (v ,w) ∈ G such that d [w] is minimal
4: remove (v ,w) from W
5: if d [w] + G [w , v] < d [v] then
6: d [v] := d [w] + G [w , v]
7: end if
8: end while

Dijkstra is continuous and we can infer the Lipschitz matrix(
1 0
N 1

)
so that Dijkstra is N-Lipschitz in input G =: x0 and output
d =: x1, where N denotes the number of edges in G .

24 / 26

Example: Dijkstra’s-Algorithm

Dijkstra(G : real array, src : int)
1: ...
2: while W 6= ∅ do
3: choose edge (v ,w) ∈ G such that d [w] is minimal
4: remove (v ,w) from W
5: if d [w] + G [w , v] < d [v] then
6: d [v] := d [w] + G [w , v]
7: end if
8: end while

Dijkstra is continuous and we can infer the Lipschitz matrix(
1 0
N 1

)
so that Dijkstra is N-Lipschitz in input G =: x0 and output
d =: x1, where N denotes the number of edges in G .

24 / 26

Conclusion

I We asked for a theory about robustness of programs to
uncertainty.

I Lipschitz continuity is an adequate answer to this question.
It is a strong property.

I Developing an automated continuity analysis is demanding.

I The analysis is proven to be sound, but incomplete.

I Arising questions:
I Is it satisfactory to live without divisions?
I The degree of automation remains unclear.

25 / 26

Conclusion

I We asked for a theory about robustness of programs to
uncertainty.

I Lipschitz continuity is an adequate answer to this question.
It is a strong property.

I Developing an automated continuity analysis is demanding.

I The analysis is proven to be sound, but incomplete.

I Arising questions:
I Is it satisfactory to live without divisions?
I The degree of automation remains unclear.

25 / 26

Literature

Swarat Chaudhuri, Sumit Gulwani & Roberto Lublinerman
(2010). Continuity Analysis of Programs. POPL, 57-70.

Swarat Chaudhuri, Sumit Gulwani, Sara Navidpour & Roberto
Lublinerman (2011). Proving Programs Robust. FSE, 102-112.

Swarat Chaudhuri, Sumit Gulwani & Roberto Lublinerman
(2012). Continuity and Robustness of Programs. CACM,
107-115.

26 / 26

	Continuity of Programs and Continuity Judgements
	Lipschitz Continuity of Programs
	Verifying the Robustness of a Program

