UNIVERSITAT
DES
SAARLANDES

Continuity and Robustness of Programs

Seminar: Robustness of Hardware and Software Systems
Prof. Dr.-Ing. Jan Reineke

Markus Schneider

Saarbriicken, December 12, 2013

/26

Motivation

» For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.
» in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

26

Motivation

» For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.

» in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

» in mobile devices: they use slightly stale satellite data

» in randomized and approximate algorithms for performance
gains

» in differential privacy to guarantee privacy in statistical
databases

26

Motivation

» For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.

» in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

» in mobile devices: they use slightly stale satellite data

» in randomized and approximate algorithms for performance
gains

» in differential privacy to guarantee privacy in statistical
databases

» This uncertainty can be probabilistic or nondeterministic.

26

Motivation

» For many programs we cannot guarantee a certain behaviour
due to uncertain input data, e.g.

» in embedded control software: any sensor data to percept
physical properties is uncertain and can be noisy

» in mobile devices: they use slightly stale satellite data

» in randomized and approximate algorithms for performance
gains

» in differential privacy to guarantee privacy in statistical
databases

» This uncertainty can be probabilistic or nondeterministic.

— We will introduce a concept of continuity for programs.

26

The Challenge: Handling the Control Flow

» Conditional branching.
1: if x > 2 then

2 y= % - X

3. else

4. y:=-bx+11
5: end if

The Challenge: Handling the Control Flow

» Conditional branching.
1. if x > 2 then

2 yi=1-x

3: else

4. y:=-bx+11
5: end if

» Loops.
1: while W # () do
2: choose edge (v, w) € G such that d[w] is minimal
3: remove (v,w) from W
4. if d[w] + G[w, v] < d[v] then
5: dlv] := d[w] + G[w, v]
6: end if
7: end while

3/26

The Challenge: Handling the Control Flow

» Conditional branching.
1. if x > 2 then

2 yi=1-x

3: else

4. y:=-bx+11
5: end if

» Loops.
1: while W # () do
2: choose edge (v, w) € G such that d[w] is minimal
3: remove (v,w) from W
4. if d[w] + G[w, v] < d[v] then
5: dlv] := d[w] + G[w, v]
6: end if
7: end while

— Control flow makes an automated continuity analysis difficult.

3/26

A Necessary Tool: Metrics

» We consider a program as the mathematical function that it
implements.

» To be able to talk about continuity we have to define a
metric for each datatype.

4/26

A Necessary Tool: Metrics

» We consider a program as the mathematical function that it
implements.

» To be able to talk about continuity we have to define a
metric for each datatype.

» Examples of metrics:

> integer and real, associated with the Euclidean metric

d(va):‘X_y|

4/26

A Necessary Tool: Metrics

» We consider a program as the mathematical function that it
implements.

» To be able to talk about continuity we have to define a
metric for each datatype.

» Examples of metrics:

> integer and real, associated with the Euclidean metric
d(va) = ‘X_)/|
> integer arrays and real arrays, associated with the maximum

norm

d(A1, A2) = Loo(Ar, A2) = max(|Au[i] — Az[1]])

4/26

Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

5/26

Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

Given two states o and o’ € X(P) and any € > 0, we define:

» o and o’ are e-close with respect to variable x; and write

oo e do(i),o(i) <e

5/26

Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

Given two states o and o’ € X(P) and any € > 0, we define:

» o and o’ are e-close with respect to variable x; and write

oo e do(i),o(i) <e

» ¢’ is an e-perturbation of o with respect to variable x; and
write

o=cj0 & om0 AVj#io(j)=0'(j)

5/26

Overview

Continuity of Programs and Continuity Judgements

Lipschitz Continuity of Programs

Verifying the Robustness of a Program

6/26

Overview

Continuity of Programs and Continuity Judgements

7/26

Continuity of a Program

Well-known e-4-Definition of Continuous Functions:
A function f : D — R is continuous at a point x € D, if

Ve>030>0VyeD: |x—y|<d=|f(x)—f(y)| <e

8/26

Continuity of a Program

Well-known e-4-Definition of Continuous Functions:
A function f : D — R is continuous at a point x € D, if

Ve>030>0VyeD: |x—y|<d=|f(x)—f(y)| <e

Continuity of a Program:
A program P is continuous at a state o with respect to an input
variable x; and an output variable x;, if

Ve>036 >0V € Z(P): 0=5,;0 = [P](c) =, [P](c")

/26

Verifying Continuity (1)

» Goal: establish an automated framework for proving a
program to be continuous

26

Verifying Continuity (1)

» Goal: establish an automated framework for proving a
program to be continuous

> The analysis is

» sound (a program proven continuous is indeed continuous),
» but incomplete (a program may be continuous even if the
analysis is not able to derive this).

9/26

Verifying Continuity (1)

» Goal: establish an automated framework for proving a
program to be continuous

» The analysis is

» sound (a program proven continuous is indeed continuous),
» but incomplete (a program may be continuous even if the
analysis is not able to derive this).

» Breaking down a program into its syntactic substructures we
get a set of inference rules of the style

P is SKIP or x := e
b+ Cont(P, In, Out)

to derive continuity judgements.

9/26

Verifying Continuity (2)

Disallowing divisions the critical statements are conditional
branches.

» The branches have to be output-equivalent at the decision
boundary of the branch.

1: if x > 2 then

2. yi= % - X

3: else

4. y.=-bx+11
5

- end if

10/26

Overview

Lipschitz Continuity of Programs

11/26

Lipschitz Continuity of a Program
Definition of Lipschitz continuous Functions:

A function f : D — R is Lipschitz continuous, if there is a constant
K so that any +e-change to x can change f(x) at most by +K - e.

12/26

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D — R is Lipschitz continuous, if there is a constant
K so that any +e-change to x can change f(x) at most by £K - ¢.

Lipschitz Continuity of a Program:

Let K : N — R>¢ be a function that takes the size of variable x; as
its input. A program P is K-Lipschitz with respect to an input
variable x; and an output variable x;, if Vo, 0’ € £(P) and Ve > 0

o =0 = [Pl(0) =k.cj [P](c")

12/26

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D — R is Lipschitz continuous, if there is a constant
K so that any fe-change to x can change f(x) at most by +K - e.

Lipschitz Continuity of a Program:

Let K : N — R>q be a function that takes the size of variable x; as
its input. A program P is K-Lipschitz with respect to an input
variable x; and an output variable x;, if Vo,0’ € X(P) and Ve > 0

0 =i 0" = [P](0) =k.; [P](o")

where K only depends on the size of (/). The size of a variable v
is defined as

> ||v|| :== 1, if v is an integer or a real,

> ||v]| := N, if v is an array of size N.

12/26

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D — R is Lipschitz continuous, if there is a constant
K so that any fe-change to x can change f(x) at most by +K - e.

Lipschitz Continuity of a Program:

Let K : N — R>q be a function that takes the size of variable x; as
its input. A program P is K-Lipschitz with respect to an input
variable x; and an output variable x;, if Vo,0’ € X(P) and Ve > 0

o =ci o' A(lle(DIl =o' (DI]) = [PI(0) =k.; [PI(c”)

where K only depends on the size of (/). The size of a variable v
is defined as

> ||v|| :==1, if v is an integer or a real,

> ||v]| := N, if v is an array of size N.

12/26

Example (1): Sorting Algorithms

» Sort; maps an array to its sorted permutation.
Example:

Sort1(6,3,3,1) = (1,3,3,6)
Sort1(6,3+¢€,3,1) = (1,3,3+¢,6)

13/26

Example (1): Sorting Algorithms

» Sort; maps an array to its sorted permutation.
Example:

Sort1(6,3,3,1) = (1,3,3,6)
Sort1(6,3+¢€,3,1) = (1,3,3+¢,6)

Perturbing each item of an array at most by +e changes each
item of the output array at most by =+e.

13 /26

Example (1): Sorting Algorithms

» Sort; maps an array to its sorted permutation.
Example:

Sort1(6,3,3,1) = (1,3,3,6)
Sort1(6,3+¢€,3,1) = (1,3,3+¢,6)

Perturbing each item of an array at most by +e changes each
item of the output array at most by =+e.

» Sorty maps an array to the list of indices giving the order.
Example:

Sorty(6,3,3,1) = (4,2,3,1)
Sort2(6,3 +¢€,3,1) = (4,3,2,1)

13 /26

Example (1): Sorting Algorithms

» Sort; maps an array to its sorted permutation.
Example:

Sort1(6,3,3,1) = (1,3,3,6)
Sort1(6,3+¢€,3,1) = (1,3,3+¢,6)

Perturbing each item of an array at most by +e changes each
item of the output array at most by +e.

» Sorty maps an array to the list of indices giving the order.
Example:

Sorty(6,3,3,1) = (4,2,3,1)
Sort2(6,3 +¢€,3,1) = (4,3,2,1)

Perturbing one item by ¢ can already lead to unbounded
changes in the corresponding outputs.

13 /26

Example (1): Sorting Algorithms
» Sort; maps an array to its sorted permutation.
Example:
Sort1(6,3,3,1) = (1,3,3,6)
Sort1(6,3+¢€,3,1) = (1,3,3+¢,6)

Perturbing each item of an array at most by +e changes each
item of the output array at most by +e.

» Sorty maps an array to the list of indices giving the order.
Example:

Sorty(6,3,3,1) = (4,2,3,1)
Sort2(6,3 +¢€,3,1) = (4,3,2,1)

Perturbing one item by ¢ can already lead to unbounded
changes in the corresponding outputs.

— Sorty is Lipschitz continuous, Sort; is not even continuous.

13 /26

Example (2): Shortest Path Algorithms

» SP; maps a graph to its minimal distance array d.

» SP, maps a graph to an array containing the shortest paths.

— SP; is continuous, SP is not.

14 /26

Example (2): Shortest Path Algorithms

» SP; maps a graph to its minimal distance array d.

» SP, maps a graph to an array containing the shortest paths.

— SP; is continuous, SP is not.

We have to define the output of our program exactly!

14 /26

Robustness of Programs

For Lipschitz continuous programs we can state:

» The output changes proportionally to any change on the
inputs.

15/26

Robustness of Programs

For Lipschitz continuous programs we can state:

» The output changes proportionally to any change on the
inputs.

» The upper bound K - € on the output changes does not
depend on the values of the input variables.

15/26

Robustness of Programs

For Lipschitz continuous programs we can state:

» The output changes proportionally to any change on the
inputs.

» The upper bound K - € on the output changes does not
depend on the values of the input variables.

— The program behaves predictably on uncertain inputs.

15/26

Robustness of Programs

For Lipschitz continuous programs we can state:

» The output changes proportionally to any change on the
inputs.

» The upper bound K - € on the output changes does not
depend on the values of the input variables.

— The program behaves predictably on uncertain inputs.

A program is called robust, if it is K-Lipschitz for some
Lipschitz constant K.

15/26

Overview

Verifying the Robustness of a Program

16 /26

Our Two Step Procedure

The sequence of assignment or SKIP-statements that P executes
on some input is called a control flow path of P.

17 /26

Our Two Step Procedure

The sequence of assignment or SKIP-statements that P executes
on some input is called a control flow path of P.

Let x; be the input and x; be the output variable of our program.

17 /26

Our Two Step Procedure

The sequence of assignment or SKIP-statements that P executes
on some input is called a control flow path of P.

Let x; be the input and x; be the output variable of our program.

Lipschitz continuity of a program is proven by establishing that
1. P is continuous in all states w.r.t. input x; and output x;.

2. Each control flow path of P is K-Lipschitz w.r.t. input x; and
output X;.

17 /26

The ldea for Finding Lipschitz Constants

The remaining task is to find out the Lipschitz constants for each
control flow path (if there exists one).

18 /26

The ldea for Finding Lipschitz Constants

The remaining task is to find out the Lipschitz constants for each
control flow path (if there exists one).

Our approach:

» Compute Lipschitz matrices containing upper bounds on the
slope of any computation that can be carried out in a control
flow path of P.

18 /26

Lipschitz Matrices

Let program P have n variables xi, .., x.

» A Lipschitz matrix is a n X n-matrix with functions
K : N — R as its matrix elements.

19/26

Lipschitz Matrices

Let program P have n variables xi, .., x.

» A Lipschitz matrix is a n X n-matrix with functions
K :N — R>g as its matrix elements.

» We will derive a set J of Lipschitz matrices.

> A judgement P : J means:
For each control flow path C in P and each x;, x; there is a

J € J such that C is Jj-Lipschitz in input x; and output Xx;.

19/26

Lipschitz Matrices

Let program P have n variables xi, .., x.

» A Lipschitz matrix is a n X n-matrix with functions
K :N — R>g as its matrix elements.

» We will derive a set J of Lipschitz matrices.

> A judgement P : J means:
For each control flow path C in P and each x;, x; there is a

J € J such that C is Jj-Lipschitz in input x; and output Xx;.

Note the similarity to the Jacobian:

» If the program represents a differentiable function, Jj; is an

upper bound on \g’;’:\.
J

19/26

Merging of Lipschitz Matrices

» Given any judgement P : J, we can merge two arbitrary
Lipschitz matrices A and B € J. Formally, we can infer

P:(J\{A B})U{AL B}
where the merge operation L! is defined as

(A L B),J = max(A,-j, B,J) Vi,j € {1, . n}

20/26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {1}

21/26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {1}

P:J h,bed
P (T \{h, L})U{hUlk}

weaken

21/26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {1}

P:J h,bed
P (T \{h, L})U{hUlk}

weaken

ITE Pr:Ji Po: 2

(IF B THEN P; ELSE Py) : J1 U J»

21/26

Rules for Deriving Lipschitz Matrices (1)

skip W

P:J J1,J2€j

weaken P:(J\{h,h})U{hUh}

Pr:Ji Po: 2

ITE (IF B THEN Pj ELSE P2) : 71U 7>

Pr:Jh Py:h

MNP P) (- h [h € Ty € To)

21/26

Rules for Deriving Lipschitz Matrices (1)

skip skip : {1}

P:J hhed

weaken P:(J\{h,h})U{hUh}

ITE Pr:Ji Po: 2
(IF B THEN P; ELSE Py) : J1 U J»
Pr:Jh Py:h
sequence

(P1; P2) :{-h | h € he T}

P=wHILE bDO R R:J Bound*(P,M)
while Ve JVij: Jj>1VvJj=0

PZ{Jl'JQ'...-J/\/I‘J,'Ej}

21/26

Rules for Deriving Lipschitz Matrices (2)

For assignments we first define a vector V, whose j-th element is
an upper bound on |%\:
J

Ve())

Va(i) + Vs()),
Va(i)Ibl + Vs(j)lal,

0,

if e is a constant

if e is x; or xj[k] for some k

if e is x; or x;[k] for some k and | # j
if eis (a+ b)

if eis (a-b) and a or b is a constant
otherwise

22/26

Rules for Deriving Lipschitz Matrices (2)

For assignments we first define a vector V, whose j-th element is
an upper bound on |%\:
J

0, if e is a constant
1, if e is x; or x;j[k] for some k
V() = 0, if e is x; or x;[k] for some k and [#
V() + Vs(i), if e is (a+ b)
Va.()Ibl + Vs(j)lal, ifeis(a-b)and aorbisa constant
0, otherwise
Ve(j), ifk=i
assign (x; :=e):{J} where J; =< 1, ifk=jF#i
0, otherwise

22/26

Rules for Deriving Lipschitz Matrices (3)

array-assign (x;[m] :=e): {J, 1}

Ve(j), ifk=i
with the same matrix J: Jij := {1, ifk=j#1i
0, otherwise

23 /26

Example: Dijkstra's-Algorithm

DUKSTRA(G: real array, src: int)

1 ...
2: while W # () do

3: choose edge (v, w) € G such that d[w] is minimal
4: remove (v, w) from W

5. if d[w] + G[w, V] < d[v] then

6 dlv] := d[w] + G[w, V]

7. end if
8: end while

24 /26

Example: Dijkstra's-Algorithm

DUKSTRA(G: real array, src: int)

1 ...
2: while W # () do

3: choose edge (v, w) € G such that d[w] is minimal
4: remove (v, w) from W

5. if d[w] + G[w, V] < d[v] then

6 dlv] := d[w] + G[w, V]

7. end if
8: end while

DIJKSTRA is continuous and we can infer the Lipschitz matrix

(v 7)

so that DIJKSTRA is N-Lipschitz in input G =: xp and output
d =: x1, where N denotes the number of edges in G.

24 /26

Conclusion

v

We asked for a theory about robustness of programs to
uncertainty.

v

Lipschitz continuity is an adequate answer to this question.
It is a strong property.

v

Developing an is demanding.

The analysis is proven to be sound, but incomplete.

v

25 /26

Conclusion

» We asked for a theory about robustness of programs to
uncertainty.

» Lipschitz continuity is an adequate answer to this question.
It is a strong property.

» Developing an is demanding.

» The analysis is proven to be sound, but incomplete.

> Arising questions:

» Is it satisfactory to live without divisions?
» The degree of automation remains unclear.

25 /26

Literature

[Swarat Chaudhuri, Sumit Gulwani & Roberto Lublinerman
(2010). Continuity Analysis of Programs. POPL, 57-70.

[4 Swarat Chaudhuri, Sumit Gulwani, Sara Navidpour & Roberto
Lublinerman (2011). Proving Programs Robust. FSE, 102-112.

[Swarat Chaudhuri, Sumit Gulwani & Roberto Lublinerman
(2012). Continuity and Robustness of Programs. CACM,
107-115.

26

26

	Continuity of Programs and Continuity Judgements
	Lipschitz Continuity of Programs
	Verifying the Robustness of a Program

