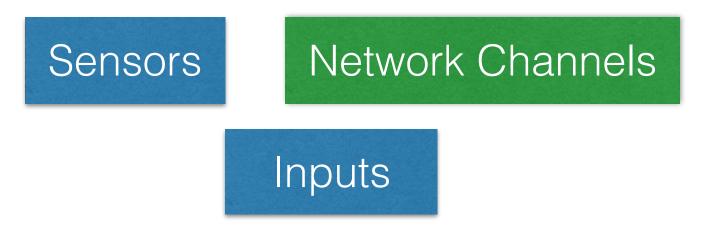
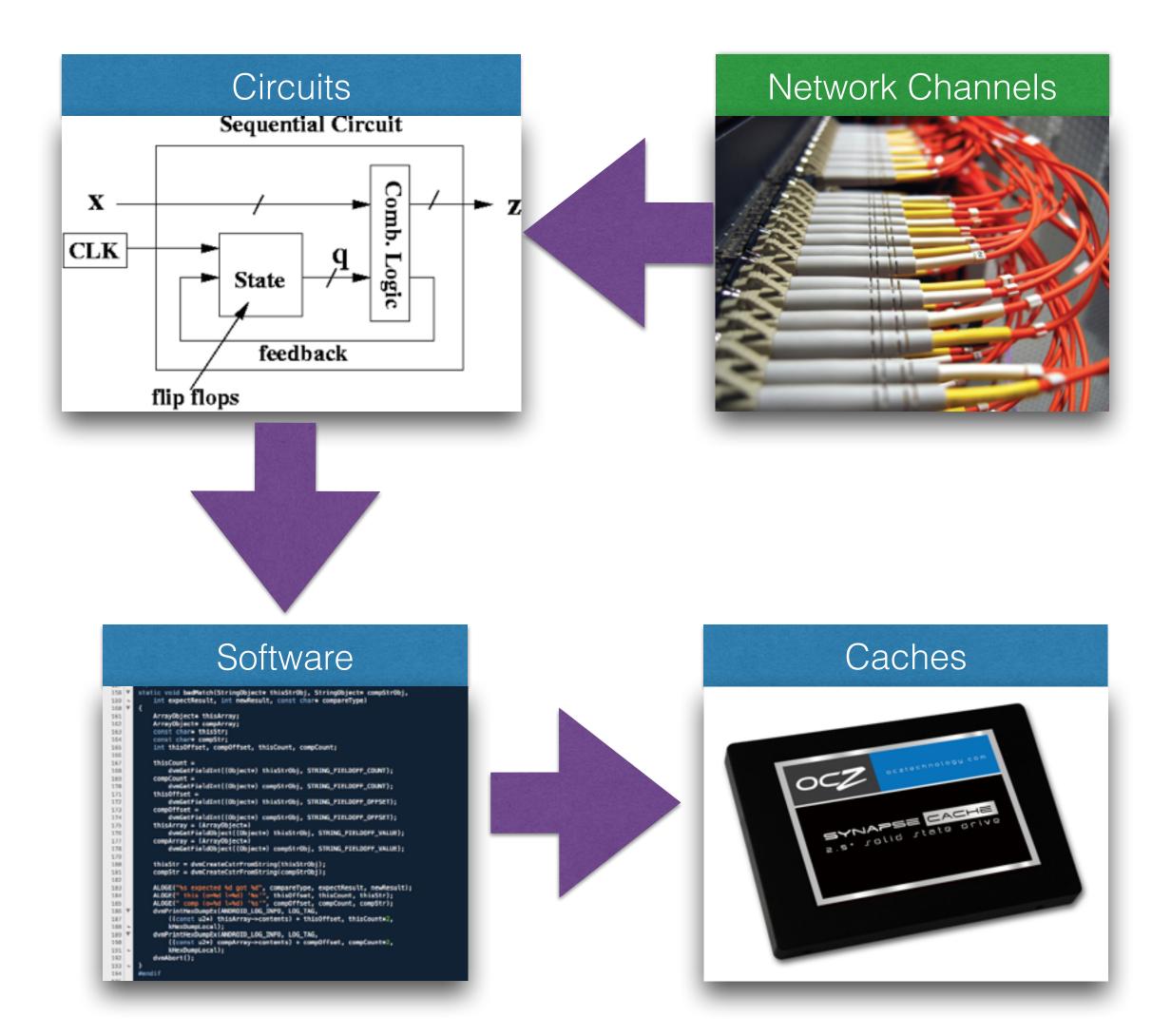
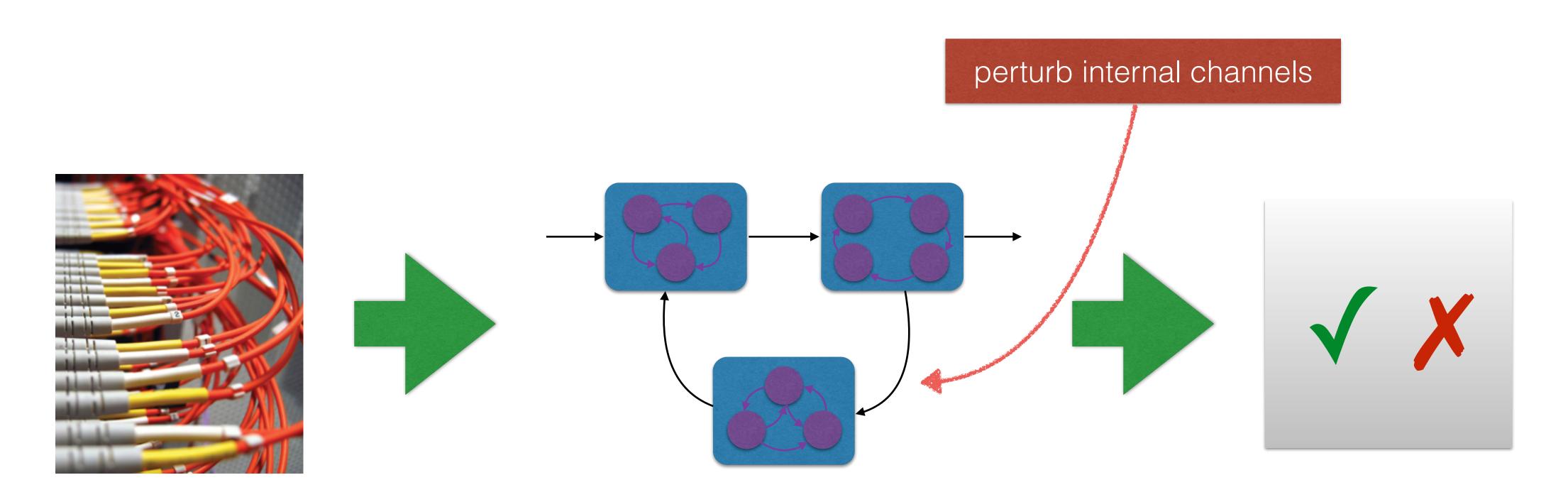
Robustness Analysis of Networked Systems

Pascal Berrang

- Verification:
 System is correct or incorrect.
- Robustness: considers uncertainty.



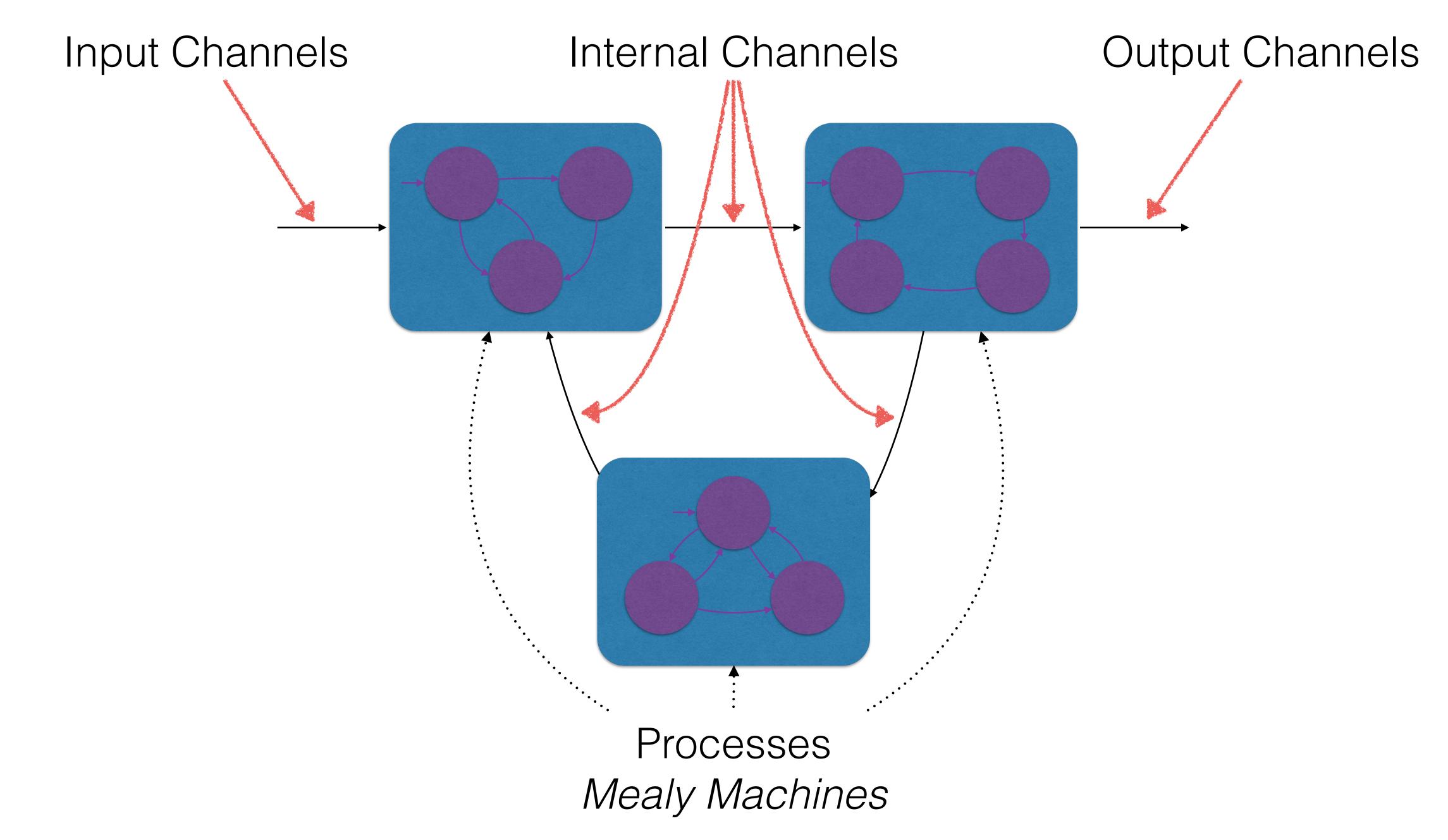


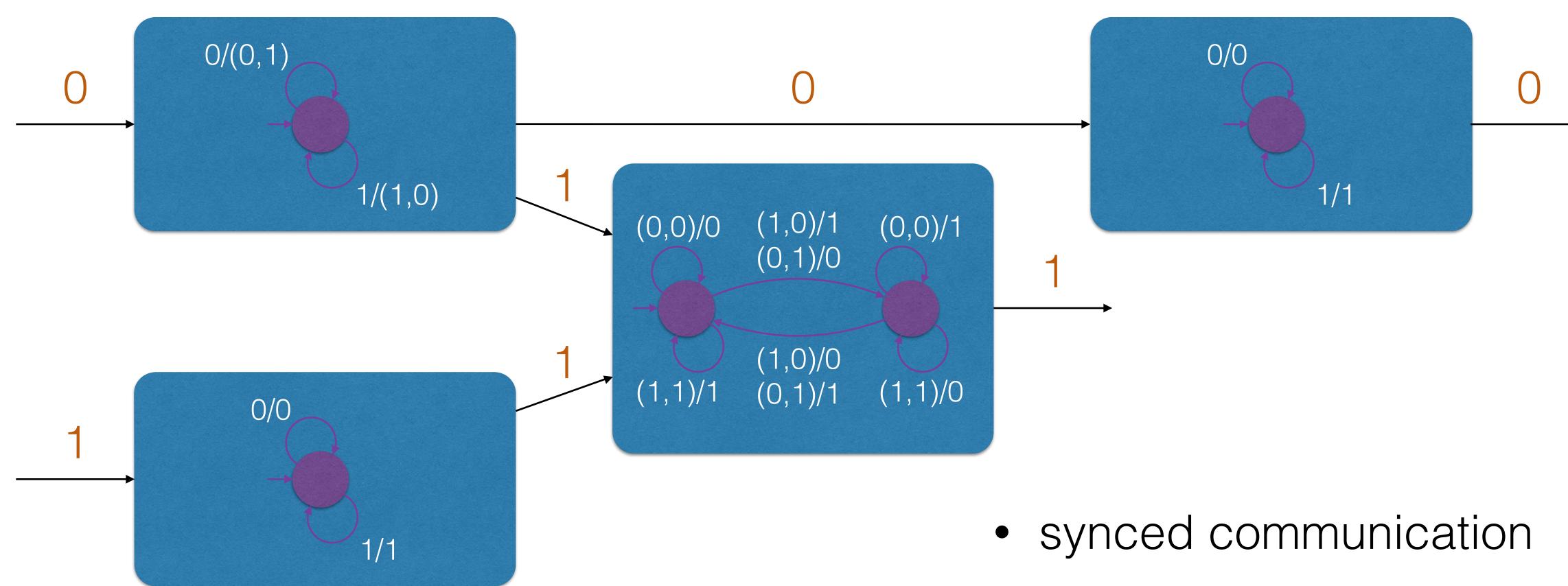


Networked System

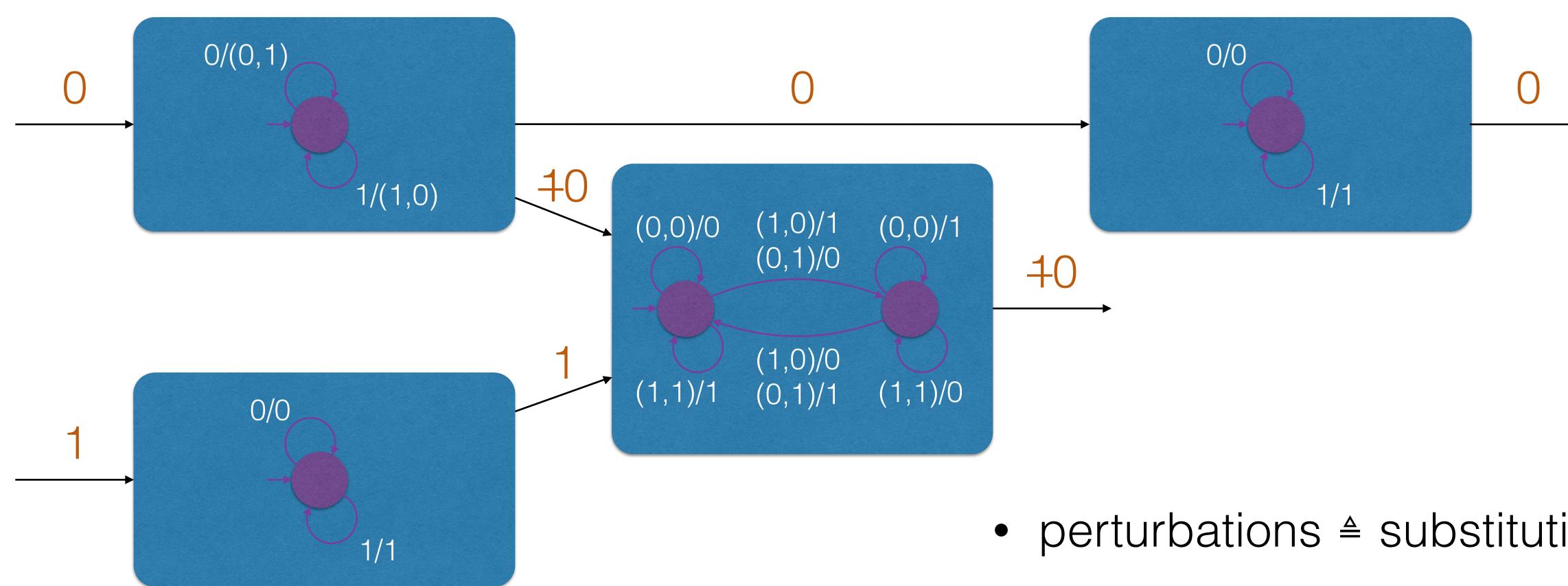
Model

Check Robustness



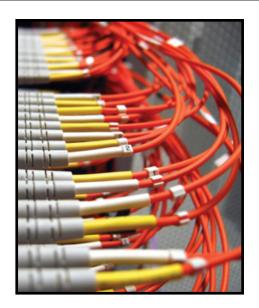


- instant message delivery



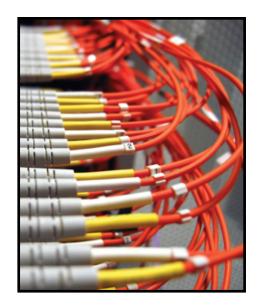
- perturbations

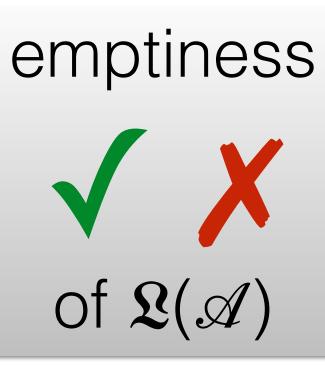
 substitutions
- deletions le extra symbol



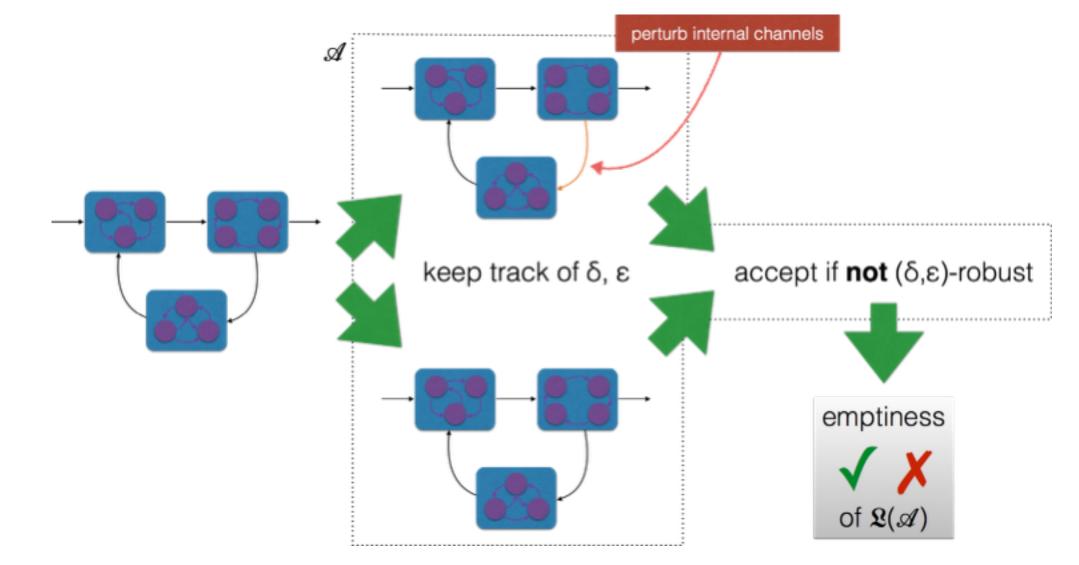
(δ, ε) -robustness

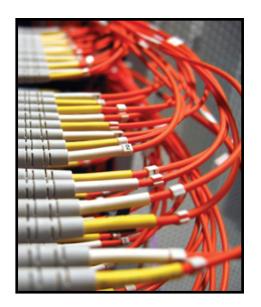
- if perturbations $\leq \delta$ then error in output channels $\leq \varepsilon$
- error measure: d(normal output, perturbed output)
 - Levenshtein distance
 - L₁ distance





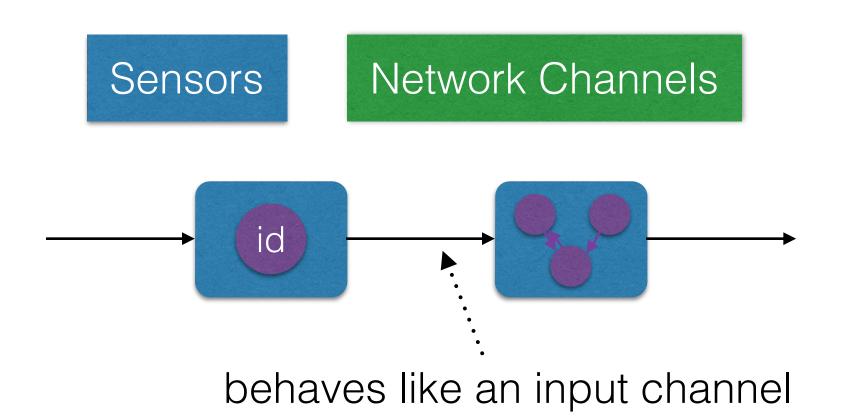
- $\mathscr{A}^{\delta,\varepsilon}$ certifies non-robustness
- Input: string s
 - simulate unperturbed execution
 - simulate perturbed execution
 - keep track of the perturbations
 - keep track of the distance of the outputs
- 1-reversal-bounded counter machine

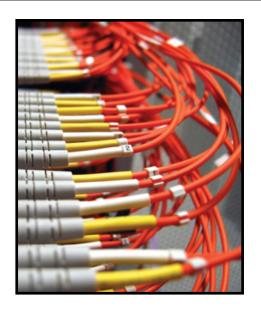




Limitations

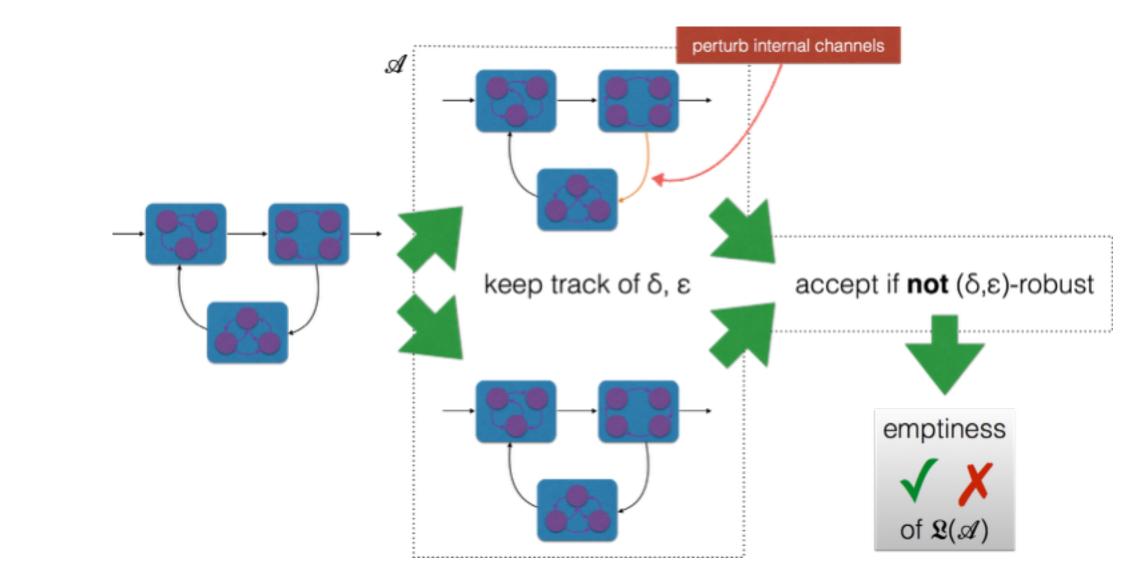
- digital signals:
 - d(house, mouse) = 1
 - -d(10, 9) = ?
- uncertainty:

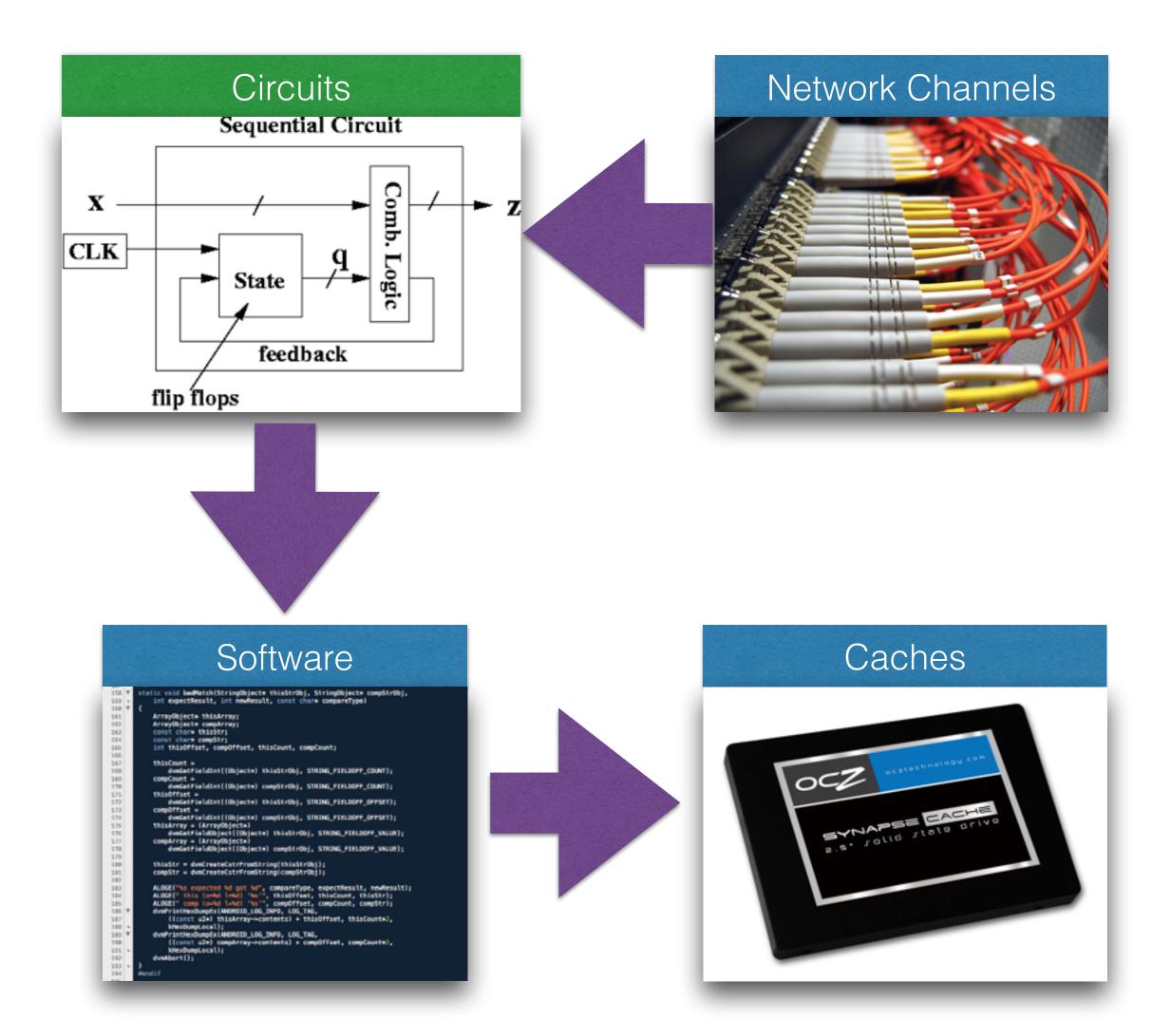


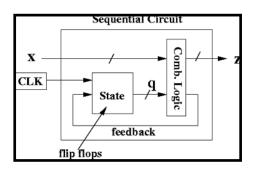


First Conclusion

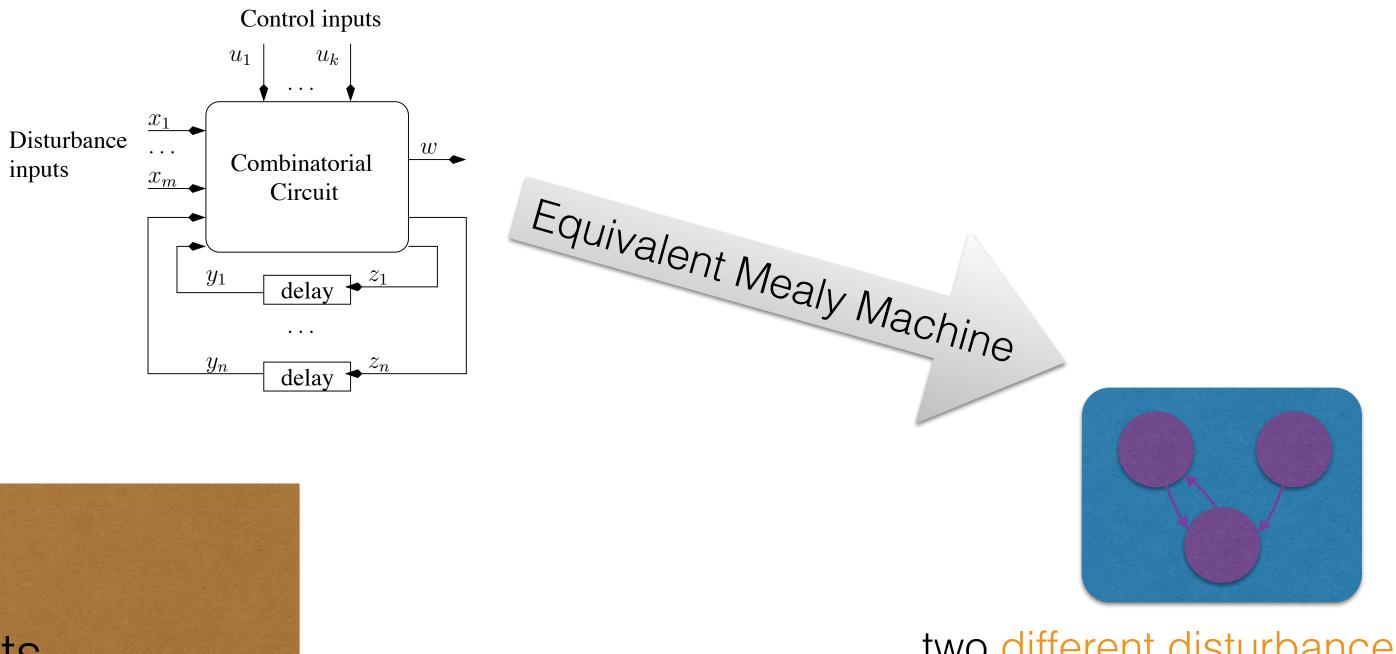
- Networked systems often safety critical.
- Robustness is crucial in networked systems!
- Easy model for error-prone networks.
- Many distance metrics possible.
- Possible extension: generalize error model.







if last mismatch in disturbance inputs < k **then** last mismatch in output < k+b

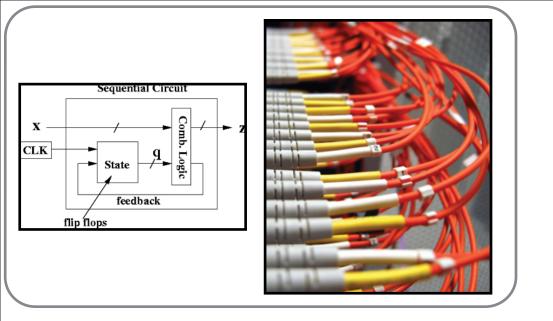


Limitations:

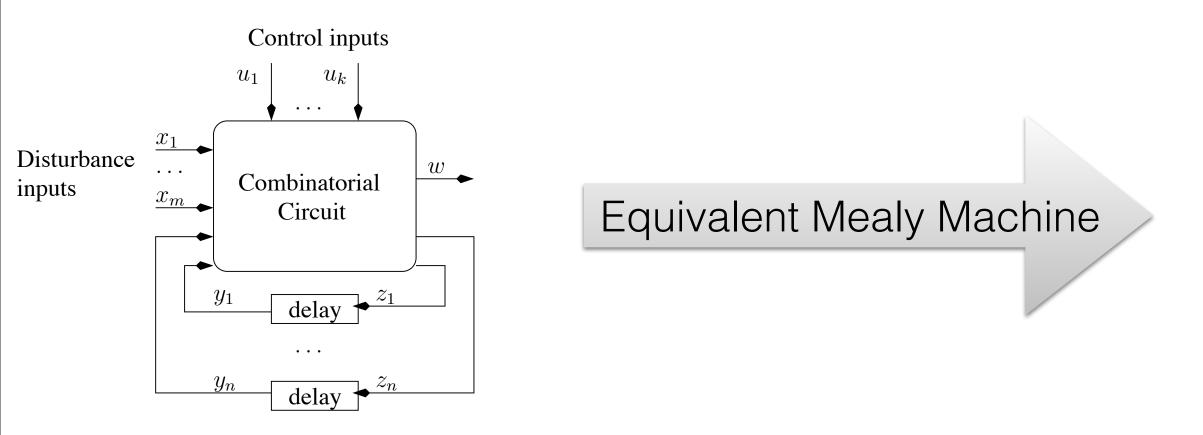
- only for synchronous circuits •
- distance not suitable for comparison •

Σ_D -robustness

two different disturbance inputs reach a reset state after next \leq b identical inputs

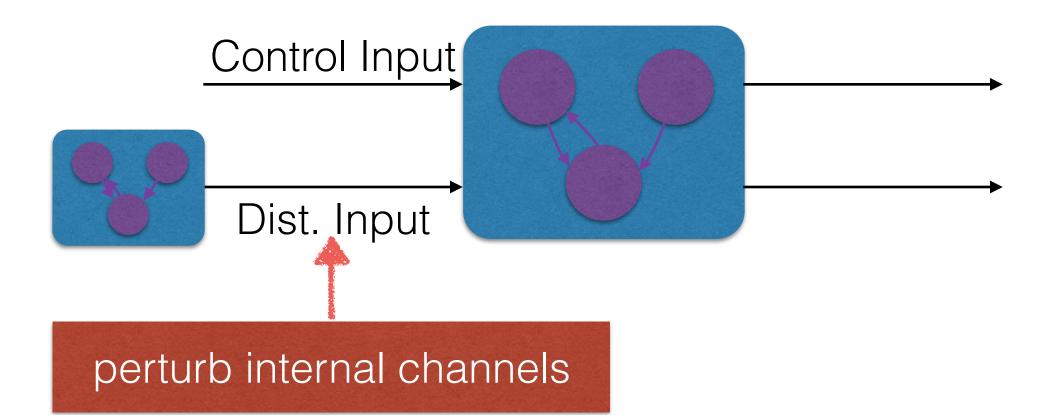


Networked Circuits



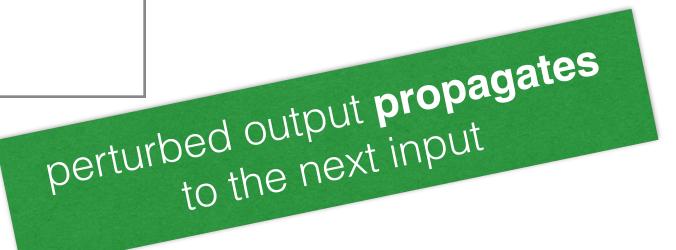
if last mismatch in disturbance inputs < k **then** last mismatch in output < k+b

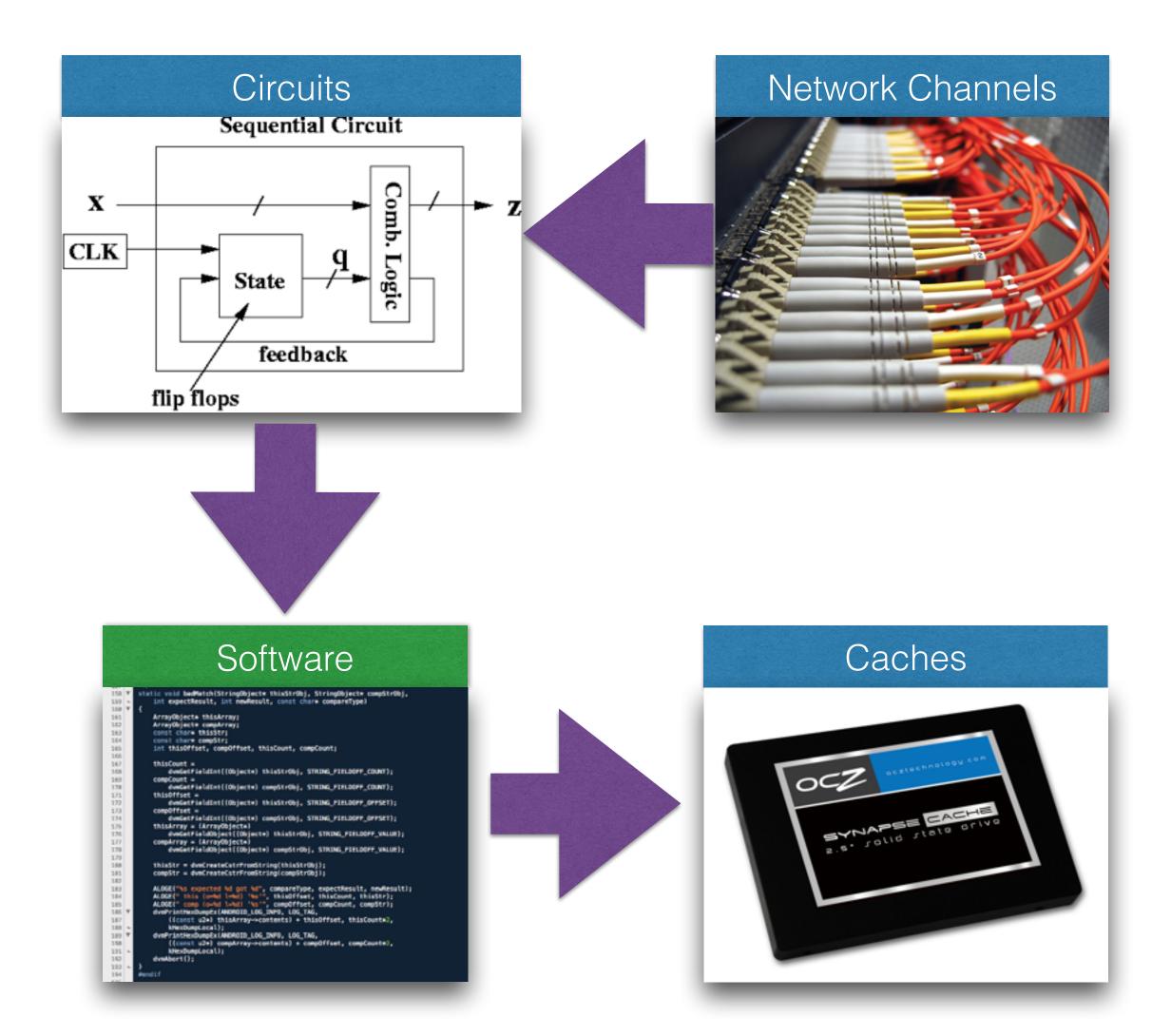
for **one** perturbation and a fixed Mealy machine, $d(normal output, perturbed output) \le b + 1$



if perturbations $\leq \delta$ then error in output channels $\leq \varepsilon$

 $010101010 \rightarrow 100100100$ k = 7, b = 1





continuous

 $\forall \varepsilon > 0 \exists \delta > 0$: (an arbitrarily small change (< δ) to the *input* value x_i **and** other inputs identical) **must only cause** an arbitrarily small change ($< \varepsilon$) to the *output* value x_j

> K-Lipschitz continuous

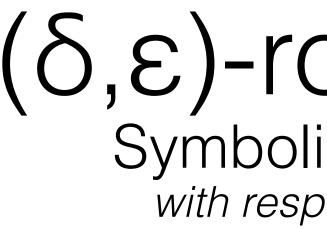
(a change ($< \varepsilon$) to the *input* value x_i and other inputs identical) **can** change the *output* value x_i by at most K· ε

Limitations:

- no divisions

what if only parts of a program are continuous

not applicable to *reactive* and *concurrent systems*



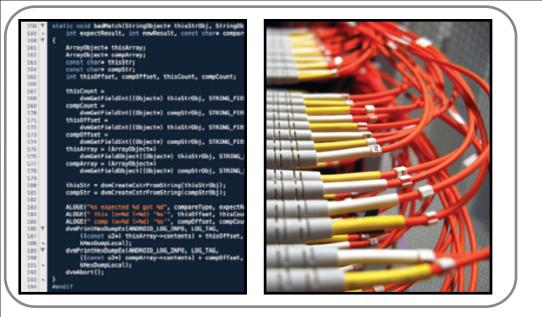
if (difference in the ith input $\leq \delta$ and other inputs identical) **then** difference in output $\leq \epsilon$

Limitations:

- δ is a constant
- •
- no floating point numbers
- no non-linear arithmetic
- considers only one output

(δ, ε) -robustness Symbolic Robustness with respect to the *i*th input

not applicable to closed loop systems



Networked System

Distances on sequences of symbols

Not directly applicable in the networked setting!

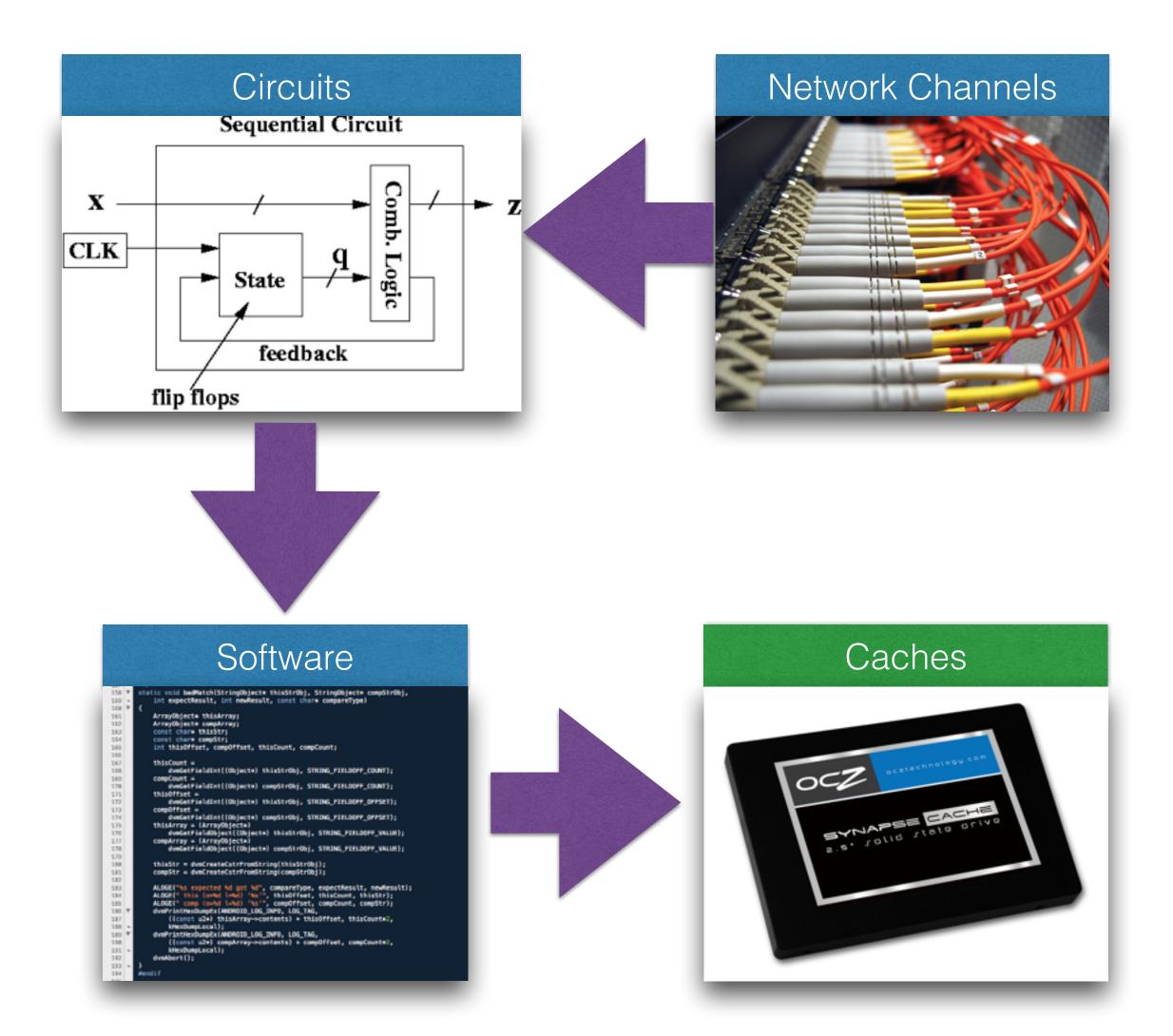
Interesting Goal: robustness w.r.t. input/output of networked system

K-Lipschitz continuous

continuous

 (δ, ε) -robustness Symbolic Robustness

Distances on datatypes like integers



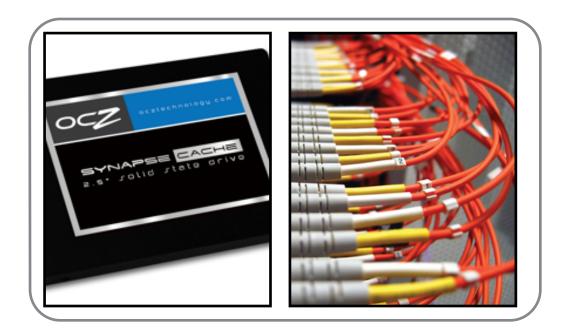
k-miss-sensitivity

same access sequence

 $misses(q,s) \le k \cdot misses(q',s) + c$

initial cache state

How does the history influence cache misses?



Multi-level cache models!

(r,c)-robustness

if $d(s,s') < \delta$ then misses(s) $\leq r(\delta) \cdot \text{misses}(s') + c(\delta)$

How does a changed input sequence influence cache misses?

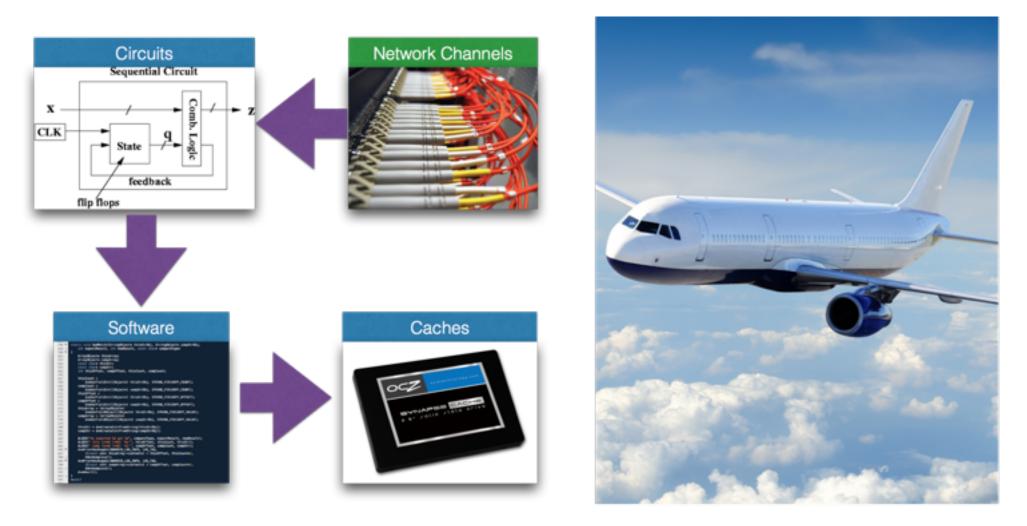
(r,c)-competitiveness

 $\frac{\text{misses}(s) \le r \cdot \text{OPT}(s) + c}{\frac{A}{2}}$ misses of optimal offline strategy

Compare to optimal strategy.

Final Conclusion

- Safety critical systems should be robust!
- Many related *robustness* properties,
 - but how to combine them?
- Weaknesses?



- Car (Audi A1) <u>http://www.extremetech.com/wp-content/uploads/2012/12/Audi-A1.jpg</u>
- <u>Grohnde_- Germany_- 1-2.JPG</u>
- Network Cables <u>http://mms.businesswire.com/media/20130603006748/de/371298/5/</u> Network_Cables_1825894.jpg
- Nickovic, ACSD '10
- Cache <u>http://portnoy-sw.com/blog/wp-content/uploads/2012/10/synapse_main.jpg</u>

Image Sources

Power Plant - <u>http://upload.wikimedia.org/wikipedia/commons/8/8d/Nuclear_Power_Plant_-</u>

Aircraft - <u>http://cdns.designmodo.com/wp-content/uploads/2010/09/CivilAircraft_005019.jpg</u>

• Sequential Circuit - <u>http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Seq/Figs/seq.png</u>

Sequential Circuit - Robustness of Sequential Circuits, L. Doyen, and T. Henzinger, A. Legay, D.