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Are they reliable?



• Verification: 
System is correct or incorrect. 

• Robustness: 
considers uncertainty.

Sensors Network Channels

Inputs

„Small perturbations to the environment or parameters do not change the 
observable behavior substantially.“



Network Channels

„Small perturbations to the environment or parameters do not change the 
observable behavior substantially.“

Software Caches

Circuits



Networked System Model Check Robustness

✓ ✗

perturb internal channels



Input Channels Output ChannelsInternal Channels

Processes 
Mealy Machines
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• synced communication 

• instant message delivery



0/(0,1)

1/(1,0)

0/0

1/1

(0,0)/0

(1,1)/1

(0,0)/1

(1,1)/0

0/0

1/1
(1,0)/1 
(0,1)/0

(1,0)/0 
(0,1)/1

0

1
1

10

0

10

0

• perturbations ≜ substitutions 

• deletions ≜ extra symbol



(δ,ε)-robustness

• if perturbations ≤ δ then error in output channels ≤ ε 

• error measure: d(normal output, perturbed output) 

- Levenshtein distance 

- L1 distance



• 𝒜δ,ε certifies non-robustness 

• Input: string s 

- simulate unperturbed execution 

- simulate perturbed execution 

- keep track of the perturbations 

- keep track of the distance of the 
outputs 

➡ 1-reversal-bounded counter machine

✓ ✗
emptiness

of 𝔏(𝒜)



Limitations
• digital signals: 

- d(house, mouse) = 1 

- d(10, 9)  = ? 

• uncertainty: 
 
 
 

Sensors Network Channels

id

behaves like an input channel



• Networked systems often safety critical. 

• Robustness is crucial in networked 
systems! 

• Easy model for error-prone networks. 

• Many distance metrics possible. 

• Possible extension: generalize error 
model.

First Conclusion
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„Small perturbations to the environment or parameters do not change the 
observable behavior substantially.“
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Figure 3. A generic sequential circuit C.

Cycles in sequential circuits are called feedback loops (as
in Figure 2(c)). Feedback loops in sequential circuits are
used to compute the value of the output at time t > 0 as a
function of the current value of the inputs, but also of the
value of its output at the previous time step t − 1 which
is fed back to the circuit through the cycle. Given that the
output of the memory devices at any time t > 0 may depend
itself on the inputs at time instants t′ < t, the output of a
sequential circuit can be a function of both its current and
past inputs. Therefore, sequential circuits are best viewed
as mappings of input sequences into output sequences. Note
that the output of a memory device may not depend at all
on any inputs, but be a function of only its own outputs
in the previous time step. The set of output values of the
delay elements represent the current state of the circuit. A
sequential circuit with k memory devices has at most 2k

states, or alternatively, a circuit with m states needs at least
⌈log m⌉ delay elements.

We now formally define a sequential circuit as a system of
equations that describe the relation between inputs, outputs
and memory elements, using a standard notation [LMK98],
[Brz62]. Our definition of sequential circuits differs from the
standard one, in that we make a distinction between control
and disturbance input variables. Figure 3 shows a generic
sequential circuit.
Definition 1: A sequential circuit C with k + m control

and disturbance inputs and n delay elements consists of
sets U = {u1, . . . , uk} and X = {x1, . . . , xm} of control
and disturbance variables, a set Y = {y1, . . . , yn} of
current-state variables, a set Z = {z1, . . . , zn} of next-state
variables, an output variable w, and a relation between input,
output, and state variables expressed by a set of equations
of the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z1 = f1(u1, . . . , uk, x1, . . . , xm, y1, . . . , yn)
. . .

zn = fn(u1, . . . , uk, x1, . . . , xm, y1, . . . , yn)
w = fC(u1, . . . , uk, x1, . . . , xm, y1, . . . , yn)

where fi and fC are Boolean functions, for i = 1 . . . n. The
set {f1, . . . , fn} is called the transition equations of C and

fC the output equation of C. The next-state variables are
updated according to the following equations, where yt

i and
zt
i denote the valuation of variables yi and zi at time step t:

yt
i =

{

0 if t = 0
zt−1
i if t > 0

for i = 1 . . . n

The next lemma states that a sequential circuit can be
“unfolded” at any time instant to express the output value
as a function of its past and current (control and data) inputs,
without explicit reference to the state variables.
Lemma 1: Given a sequential circuit C with k+m control

and disturbance input variables and n delay elements, and a
time instant t ∈ N, the value of the output and state variables
in C at time t is a function of its past and current control
and disturbance values, that is, there exist functions f t, gt

i :
{0, 1}(k+m)×(t+1) → {0, 1} for i = 1 . . . n such that

wt = f t(u0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

and

zt
i = gt

i(u
0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

Sequential circuits can also be encoded as functions that
map input sequences to output sequences (i.e., transducers).
Consider a sequential circuit C with k + m control and
disturbance input variables and n memory elements. Let
ΣC = {0, 1}k and ΣD = {0, 1}m be the corresponding con-
trol and disturbance alphabets. We denote by Σ = ΣC×ΣD

the joint input alphabet where each letter (c, d) ∈ Σ denotes
a vector of assignments to the input variables, and by
Γ = {0, 1} the output alphabet. The sequential behavior of
the circuit C is the function FC : Σω → Γω and we denote
by γ = FC(σ) the fact that the output sequence γ ∈ Γω is
generated by C on input σ ∈ Σω . By Lemma 1, for all t ≥ 0,
we can express γt as a function of the previously consumed
input letters σ[0,t+1). In the rest of the paper, we use this
sequence-oriented definition of the semantics of sequential
circuits.

B. Hamming and Levenshtein Distances
Hamming and Levenshtein distances are standard metrics

that have been proposed to measure the similarities between
pairs of sequences. In this section, we formally define
them and show that they are not appropriate for studying
robustness of sequential circuits.
Definition 2: Let Σ be a finite alphabet and a1, a2 ∈ Σ.

The Hamming distance between two finite words σ̂1, σ̂2 ∈
Σ∗ such that |σ̂1| = |σ̂2|, is defined inductively by

dH(ϵ, ϵ) = 0

dH(a1 · σ̂1, a2 · σ̂2) =

{

dH(σ̂1, σ̂2) if a1 = a2

1 + dH(σ̂1, σ̂2) if a1 ̸= a2

The Hamming distance between two infinite words σ1,σ2 ∈
Σω is

dω
H(σ1,σ2) = lim

n→∞
dH(σ[0,n)

1 ,σ
[0,n)
2 ).

if last mismatch in disturbance inputs < k 
then last mismatch in output < k+b

two different disturbance inputs 
reach a reset state 

after next ≤ b identical inputs

Equivalent Mealy Machine

Limitations:
• only for synchronous circuits 
• distance not suitable for comparison
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sequential circuit can be a function of both its current and
past inputs. Therefore, sequential circuits are best viewed
as mappings of input sequences into output sequences. Note
that the output of a memory device may not depend at all
on any inputs, but be a function of only its own outputs
in the previous time step. The set of output values of the
delay elements represent the current state of the circuit. A
sequential circuit with k memory devices has at most 2k

states, or alternatively, a circuit with m states needs at least
⌈log m⌉ delay elements.

We now formally define a sequential circuit as a system of
equations that describe the relation between inputs, outputs
and memory elements, using a standard notation [LMK98],
[Brz62]. Our definition of sequential circuits differs from the
standard one, in that we make a distinction between control
and disturbance input variables. Figure 3 shows a generic
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Sequential circuits can also be encoded as functions that
map input sequences to output sequences (i.e., transducers).
Consider a sequential circuit C with k + m control and
disturbance input variables and n memory elements. Let
ΣC = {0, 1}k and ΣD = {0, 1}m be the corresponding con-
trol and disturbance alphabets. We denote by Σ = ΣC×ΣD

the joint input alphabet where each letter (c, d) ∈ Σ denotes
a vector of assignments to the input variables, and by
Γ = {0, 1} the output alphabet. The sequential behavior of
the circuit C is the function FC : Σω → Γω and we denote
by γ = FC(σ) the fact that the output sequence γ ∈ Γω is
generated by C on input σ ∈ Σω . By Lemma 1, for all t ≥ 0,
we can express γt as a function of the previously consumed
input letters σ[0,t+1). In the rest of the paper, we use this
sequence-oriented definition of the semantics of sequential
circuits.

B. Hamming and Levenshtein Distances
Hamming and Levenshtein distances are standard metrics

that have been proposed to measure the similarities between
pairs of sequences. In this section, we formally define
them and show that they are not appropriate for studying
robustness of sequential circuits.
Definition 2: Let Σ be a finite alphabet and a1, a2 ∈ Σ.

The Hamming distance between two finite words σ̂1, σ̂2 ∈
Σ∗ such that |σ̂1| = |σ̂2|, is defined inductively by

dH(ϵ, ϵ) = 0

dH(a1 · σ̂1, a2 · σ̂2) =

{

dH(σ̂1, σ̂2) if a1 = a2

1 + dH(σ̂1, σ̂2) if a1 ̸= a2

The Hamming distance between two infinite words σ1,σ2 ∈
Σω is

dω
H(σ1,σ2) = lim

n→∞
dH(σ[0,n)

1 ,σ
[0,n)
2 ).

if last mismatch in disturbance inputs < k 
then last mismatch in output < k+b

Equivalent Mealy Machine

Control Input

Dist. Input

perturb internal channels

if perturbations ≤ δ then error in output channels ≤ ε

for one perturbation and a fixed Mealy machine, 
d(normal output, perturbed output) ≤ b + 1 perturbed output propagates!

to the next input

010101010 → 100100100 
010100010 → 100101000 

k = 7, b = 1
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continuous
∀ε>0 ∃δ>0: (an arbitrarily small change (< δ) to the input value xi 

and other inputs identical)!
must only cause an arbitrarily small change (< ε) to the output value xj

Limitations:
• what if only parts of a program are continuous 
• no divisions 
• not applicable to reactive and concurrent systems

K-Lipschitz 
continuous

(a change (< ε) to the input value xi 
and other inputs identical)!

can change the output value xj by at most K∙ε



(δ,ε)-robustness

if (difference in the ith input ≤ δ 
and other inputs identical)!

then difference in output ≤ ε

• δ is a constant 
• not applicable to closed loop systems 
• no floating point numbers 
• no non-linear arithmetic 
• considers only one output

Limitations:

Symbolic Robustness
with respect to the ith input



Not directly applicable in the networked setting!

(δ,ε)-robustness
Symbolic Robustnesscontinuous

K-Lipschitz 
continuous

Distances on datatypes 
like integers

Networked System

Distances on 
sequences of symbols

Interesting Goal: 
robustness w.r.t. input/output of networked 

system



Network Channels

„Small perturbations to the environment or parameters do not change the 
observable behavior substantially.“

Software Caches

Circuits



k-miss-sensitivity (r,c)-robustness

if d(s,s’) < δ!
then misses(s) ≤ r(δ) ∙ misses(s’) + c(δ)

(r,c)-competitiveness

misses(q,s) ≤ k ∙ misses(q’,s) + c

initial cache state

same access sequence

misses(s) ≤ r∙ OPT(s) + c

misses of optimal offline strategy

How does the history influence 
cache misses?

How does a changed input 
sequence influence cache 

misses?

Compare to optimal strategy.Multi-level cache models!



Final Conclusion

• Safety critical systems should be 
robust! 

• Many related robustness properties, 

‣ but how to combine them? 

• Weaknesses?
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