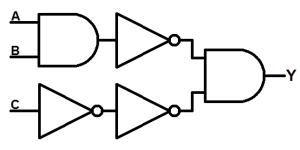
ROBUSTNESS OF SEQUENTIAL CIRCUITS

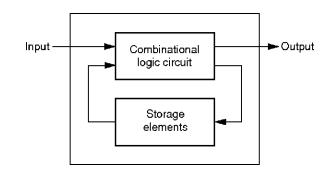
PRESENTATION BY SRIKRUPA RAGHURAMAN

SYNOPSIS

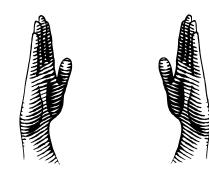
INTRODUCTION



COMBINATORIAL CIRCUITS



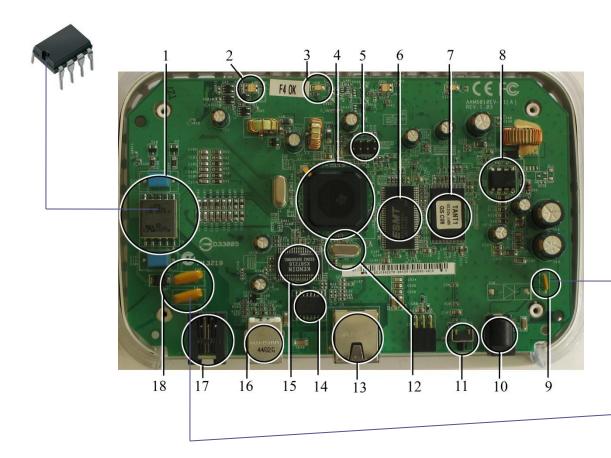
SEQUENTIAL CIRCUITS

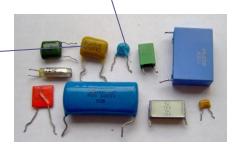


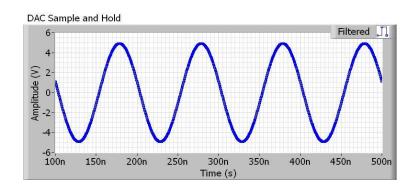
THE TYPES OF DISTANCES - METRICS

OF
SEQUENTIAL
CIRCUITS

EMBEDDED SYSTEMS







EMBEDDED SYSTEMS

Software

www.cavsi.com

MAIN CHALLENGE

EXTERNAL PERTURBATIONS

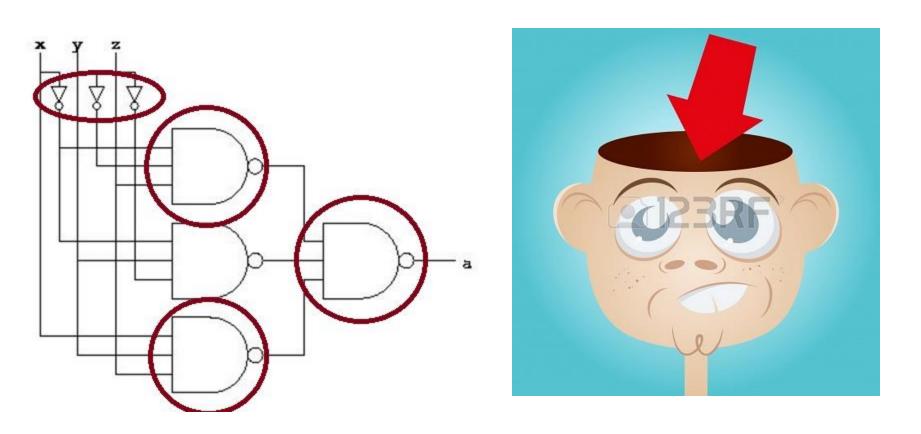
POOR ACCURACY
OF SENSORS

UNCERTAIN INPUTS

UNPREDICTABLE DELAYS

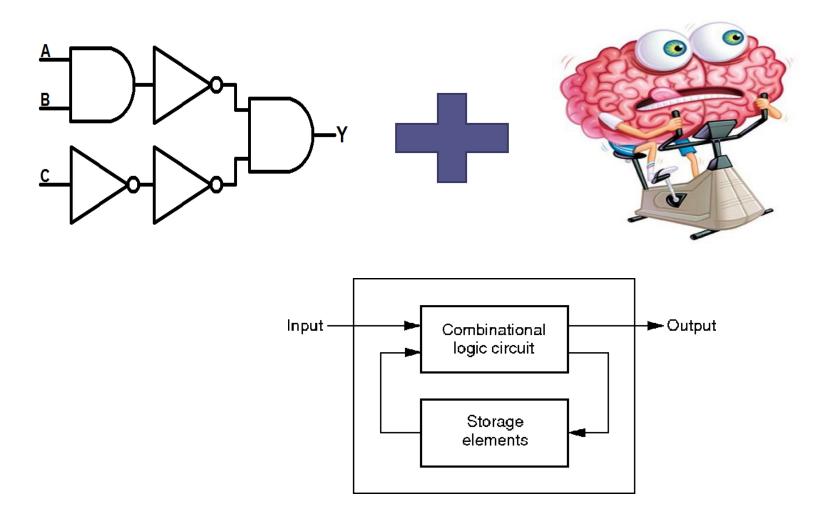
ROBUST BEHAVIOUR

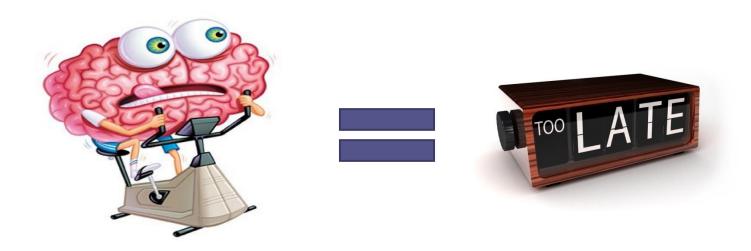
COMBINATORIAL CIRCUITS



OUPUT AT TIME "T" depends on INPUT AT TIME "T"

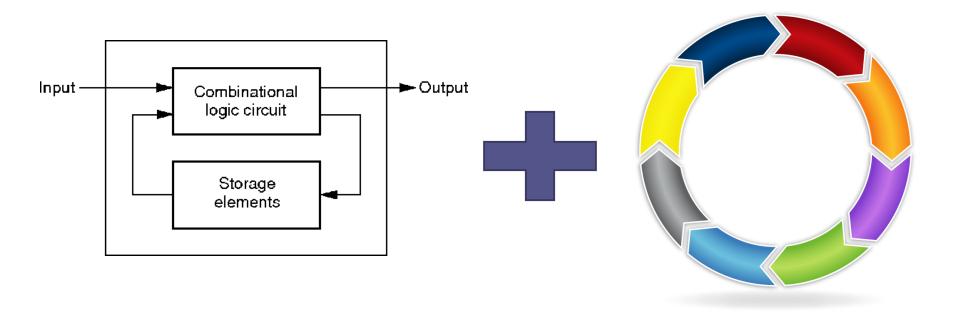
SEQUENTIAL CIRCUITS





- ✓DELAY = shifts input values by one time step.
- ✓ Output Value at time t>0 = Input Value at time t-1.

CYCLIC CIRCUITS

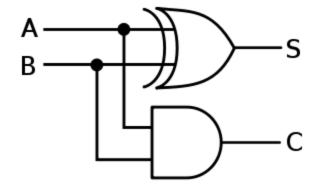


- >CYCLES IN SEQUENTIAL CIRCUITS = <u>FEEDBACK</u> <u>LOOPS</u>
- >OUPUT AT TIME T = INPUT AT TIME "T" AND T-1 (present and past inputs)

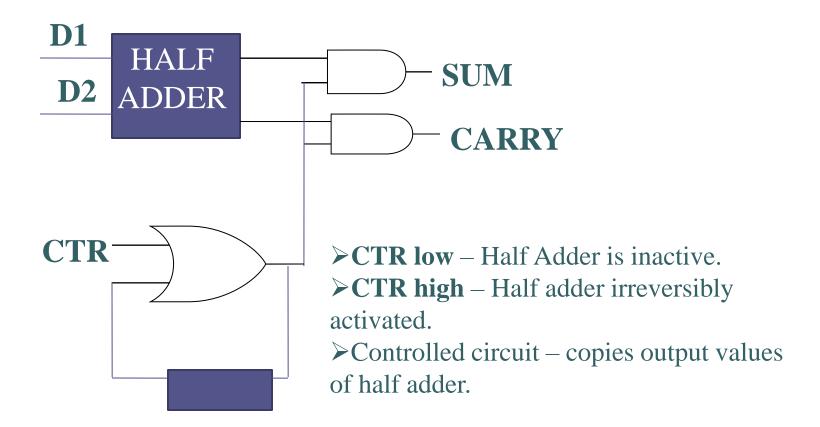
ROBUSTNESS OF SEQUENTIAL CIRCUITS

TO NOTE:

- >DISTURBANCE VARIABLES
- ENVIRONMENT ACTIONS.
- >CONTROL VARIABLES –
 CONTROL ACTIONS
- ➤ ROBUSTNESS STUDIED
 WITH RESPECT TO
 DISTURBANCE VARIABLES.



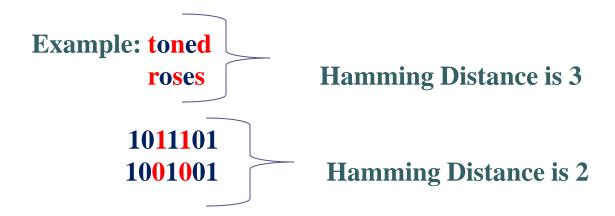
Output at any time "t" depends on Inputs A and B at time "t"



HAMMING AND LEVENSHTEIN DISTANCES

>STANDARD METRICS – Measures similarities between pairs of sequences.

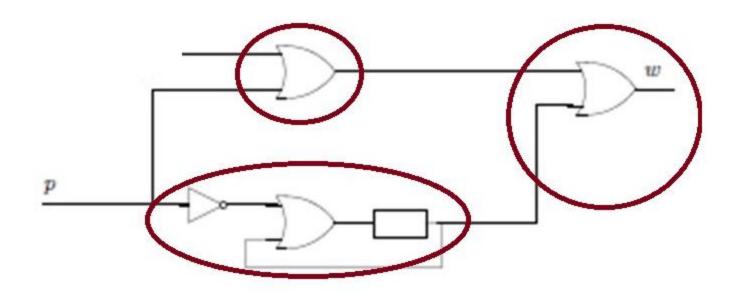
>HAMMING DISTANCE



>LEVENSHTEIN DISTANCE

Example: kitten sitting

The Levenshtein distance is 3



$$\sigma_1: \ \overline{\boldsymbol{p}} \cdot p^{2n} \cdot \overline{p} \cdot p^{\omega} \qquad \gamma_1: \ w \cdot w^{2n} \cdot \underline{\boldsymbol{w}} \cdot w^{\omega}$$

$$\sigma_2: \ \boldsymbol{p} \cdot p^{2n} \cdot \overline{p} \cdot p^{\omega} \qquad \gamma_2: \ w \cdot w^{2n} \cdot \underline{\overline{\boldsymbol{w}}} \cdot w^{\omega}$$

$$\sigma_2: \ \boldsymbol{p} \cdot p^{2n} \cdot \overline{p} \cdot p^{\omega}$$

$$\gamma_1: w \cdot w^{2n} \cdot \underline{w} \cdot w^{\omega}$$

$$\gamma_2: w \cdot w^{2n} \cdot \underline{\overline{w}} \cdot w^{\omega}$$

p = single disturbance variable w = output variable

DRAWBACK:

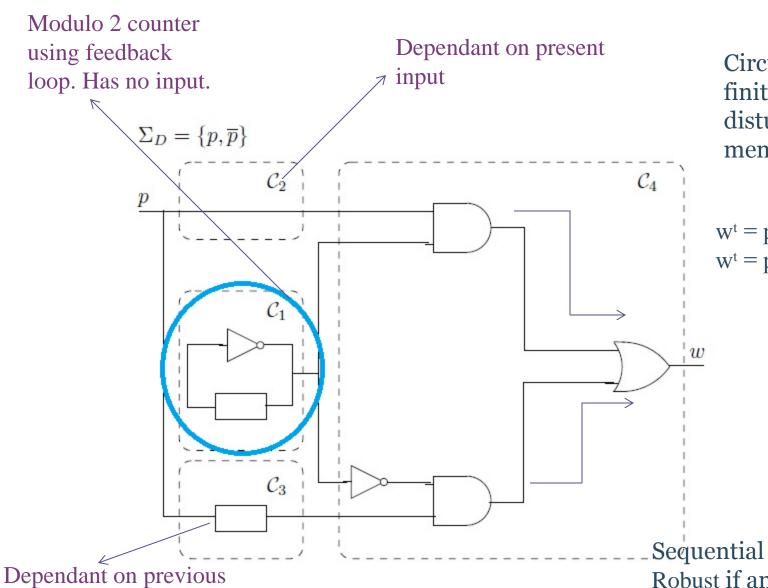
Error Observed at: (2n+2)th position

COMMON SUFFIX DISTANCE

10000011<mark>10100</mark>11111 10000011**0101<u>1</u>**111111

FINITE DISTURBANCE HORIZON

- \triangleright Bound b, last mismatching position k
- Last mismatching in output sequence occurs before k+b



time step

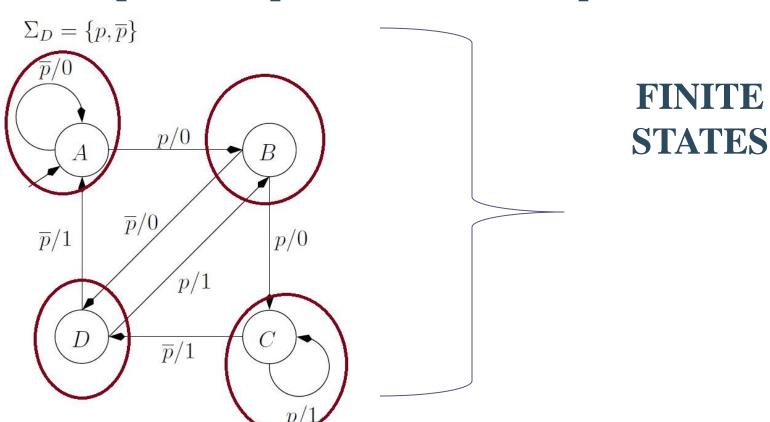
Circuit has finite disturbance memory

 $w^t = p^t$ (t is even) $w^t = p^t-1$ (t is odd)

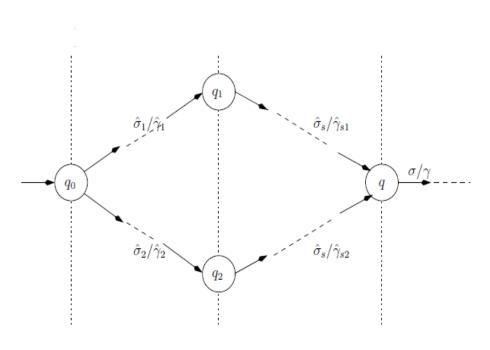
Sequential Circuit is ΣD Robust if and only if it has finite disturbance horizon

MEALY MACHINES

➤ Graphical Representation of Sequential circuits



TO CHECK ROBUSTNESS FOR SEQUENTIAL CIRCUITS



CRITERIA:

ΣD – SYNCHRONIZED

ALGORITHM:

"When there exists a length β on all input words , then from every pair of states a single (output state) is reached".

TIME COMPLEXITY:

$$O((|\mathbf{Q}|^2+\mathbf{Q}) \cdot |\mathbf{\Sigma}\mathbf{C}| \cdot |\mathbf{\Sigma}\mathbf{D}|^2)$$

FUTURE WORK AND CONCLUSION

- ➤ Insertion, Suppression of information
- ➤ Robustness of Synchronous Circuits
- ➤ Two sequential circuits are robust Which one is better?

LITERATURE

- □ Laurent Doyen LSV, ENS Cachan, France
- □Thomas A. Henzinger IST Austria, Austria
- □Axel Legay INRIA Irisa, France
- □Dejan Nickovic IST Austria, Austria