
A MODEL OF INTERFERENCE

IN A SHARED RESOURCE MULTIPROCESSOR*

John E. Jensen and'Jean-Loup Baer
Department of Computer Science

University of Washington
Seattle, Washington

Abstract

This paper presents a generalized model of
tlghtly-coupled multlprocessor systems which is then
simplified to form a stochastic model for the study of
interference. Analysis is performed on the resource
contention which is characteristic of such systems in
order to find a measure of system performance. After
reviewing the problem of memory interference, the
analysis is extended to contention in other individual
resources, then combined to form a model for the
interacting effects of contention in systems where
processors contend for several shared resources.

i. Introduction

Recent design proposals and realizations [4,10,11]
have included multiprocessors in attempts to meet the
expanding demand for hlgh-performance systems. A
solution to the need for improved efficiency lles in
the distribution, duplication and sharing of hardware
resources. Unfortunately this leads to situations
in which a given unit may receive several simultaneous
requests for service (e.g. a memory module). The
result is degraded performance, or interference,
measured by comparing actual machine performance to
the ideal case for which there is no contention. This
paper presents a generalized model of tlghtly-coupled
multlproeessors with highly shared computing resources.
Analysis is then performed on the resource contention
in order to find a measure of system performance.

The best known contention problem is when proces-
sors and I0 controllers interfere in their access to
main storage. Analytic models with exact solutions
exist for two processor systems [8] via Markov chain
methods, but the general case becomes too complex,
precluding a precise solution. For a solution in
closed-form one has to introduce simplifying assump-
tions in order to prevent the analysis from becoming
unwieldy. A series of models have been introduced
in which a prototype instruction is assumed and its
execution rate (IER) analyzed for a variety of multi-
processor types [9]. Closed-form solutions are
obtained for IER in terms of parameters which relate
typical design characteristics of the memories and
processors. In addition, cache memories may be intro-
duced to the processor-memory interface [3]. In this
paper, we extend previous formulas [9] to include
cache memories, and then propose a more general one
for systems in which processors contend for several
resource classes as well as primary memory.

2. The Machine Model

2.1 A General Shared Resource Multiproeessor
Figure 1 shows a general model of a shared

resource multlprocessor (SRM) in PMS notation [2].
The example was chosen purely for ease in description
and conservation of space, with the design of more
specific configurations being one of the objectives
of the model. 8 central processors P.c share 16
modules of primary memory M.p'through a central
processor-memory switch S.mp. Each P.c possesses
some local memory M.c and a set of mapping registers
D.map which define its access to main memory.

*Thisresearch was supported by NSF grant GJ-41164.

The P.c's have no arithmetic power, performing
only load, store and branch instructions. Other
instructions are memely fetched and decoded, while
operands are sent to a shared set of pipelined
execution units D.e via a common request bus L.req.
The P.c's are arranged into 2 time-shared rings by
S.ring, which creates a maximum overlap of computing
with a minimum bandwidth required in the request
bus [4]. Input-output is initiated to IO controllers
in the same way as a request for a D.e. When an "IO"
instruction is executed, a request is sent to an
appropriate K.io and the P.c is allowed to continue.
IO-completion interrupts cause the appropriate P.e to
be interrupted [5].

A special controller K.sched is provided for
assigning new tasks to P.c's, with two options for
flexibility in the scheduling mechanism. In the
"floating control" scheme [5,7] P.e's perform their
own scheduling under the control of K. sehed. Under
"fixed control", K. sched serves each request by
returning the entry point of the new task in memory,
while a dedicated processor P.sched (with associated
M.a for the scheduling tables) constantly supplie~
K.sched with the next task to be assigned for
execution.

2.2 Examples of the Model
The generality and versitility of the model may

be illustrated by examining some current designs.
C.mmp [ii] is a set of 16 asynchronously executing
PDP-II's (each with local memory) which access main
memory through D.map's and S.mp. The ring structure
and D.e's are missing since each P.c has its own
complete processing capability. C.mmp's I0 system
is similar to its memory system in that the P.e's are
connected to busses supporting the IO controllers by
the S.kp switch. Scheduling is handled by the oper-
ating system without any additional hardware.

Figure 2 is a conception of Texas Instruments'
ASC [i0]. A single P.e feeds instructions to 4 high-
speed pipelined D.e's which consume streams of vector
operands under the control of resisters found in M.c.
The most interesting feature is the "peripheral
processor" which performs the control and data-manage-
ment functions for the ASC, and is actually a ring
of "virtual processors" (P.v).

Figure 3 emphasizes the ring structure aspects
by modeling Flynn's SRM [4]. It has 4 rings of 8
P.c's, and uses L.req and D.e's as in the model. The
P.c's have no D.map or S.mp, but access memory
through buffers. Cache memory M.c is associated with
each ring. No mention is made of IO, and scheduling
is done under program control through a standard
fork-join construct.

2.3 The Simplified Machine Model
The model described thus far requires too much

detail to be studied at the instruction level, hence
we capture some of its generality into a more manage-
able form in Figure 4. Centrally located is S.mp
which provides access by the P.e's and K.io's to the
M.p modules. The specialized scheduling processor
P.s (with memory M.a) makes all policy decisions
regarding the activation of user and operating system
tasks as well as allocating the system's resources.
IO consists of three subsystems, representing the
common IO speeds anticipated.

52

The multiprocessing resources consist of synchro-
nized processor rings (3 in the figure) with a set of
independent pipe-lined D.e's which are capable of per-
forming all arithmetic functions (except divides) with
the same latency. Each ring consists of skeleton P.c's
and corresponding M.c's connected by a processor-ring
switch S.p. The purpose of the time-multiplexed
switch [4] is to select the P.c that is to be con-
sidered "active" during each time-slice of the ring,
and to coordinate all communication between the P.c's
and the D.e's and the remainder of the system.

The instruction units use an instruction set which
is patterned after the SRM [4]. Each of the 8 skeleton
P.c's begins its instruction-fetch sequence one minor
cycle behind its predecessor on the ring. In one major
cycle each P.c will prepare one instruction for execu-
tion to take place during the subsequent one. A 60ns
minor cycle is assumed [i,i0], resulting in a 480ns
major cycle which provides ample time (120ns) for
finding operands in an implicit cache. In the case
where an access to main memory is required ("miss" on
the cache), 600ns should be more than sufficient to
perform the transfer (120ns plus one major-cycle delay)
and still maintain the synchronous timing of the
processor ring.

3. The Resource Contention Model

3.1 The Memory Interference Problem
In this section, we introduce an analytic model

for general resource contention used to estimate the
losses due to interference between processors re-
questing identical resources. We begin by examining
memory interference (the request by more than one P.c
for the same M.p module) using expected values for the
number and types of instructions executed. The com-
bined effects of the hardware speed and memory con-
flicts are characterized by a single entity, the in-
struction execution rate (IER), for which we calculate
and estimate.

The P.c's and M.p's are viewed as a stochastic
service system in which the M.p's represent m servers,
each capable of serving one of k P.c's. Each server
handles only those requests directed toward it,
serving them in order of arrival and queuing those
occurring when it is busy. The M.p's are characterized
by a constant service time (access time) followed by an
interval of unavailability (rewrite time) before sub-
sequent requests can be serviced. P.c's are character-
ized by the amount of elapsed time between the comple-
tion of service on one memory request and the genera-
tion of the next one.

The problem is made more tractable with a few
simplifying assumptions. Although processor behavior
varies with different instruction types, the probabil-
ity distribution of instructions, the average frequency
of memory requests, and the average time required to
execute one instruction can be determined. The access
pattern of each processor is assumed to be random, and
no distinction is made between read and write requests.
We simplify further by considering each instruction to
be a series of instances of a "unit instruction" con-
sisting of one memory access followed by a fixed (mean)
interval of processor activity.

3.2 An Analytic Model for Memory C~ntention
In Strecker's formulas for the "unit execution

rate" [9], the execution sequence is considered as a
Markov process, consisting of a series of "unit
instructions", from which we may calculate the rate
of memory service. (The principle parameters are
defined in Table i.) The unit instruction begins when
an address is received by one of the m modules of M.p
at S.mp. Ta is the time required for the memory
control to set up the switch and for data to be
delivered. Tw is the time required for the module to

53

recover and become ready for the next request. Tp
begins for each of the k active P.c's when it receives
data from an M.p, extending through the computation
until the P.c has a new data address. The "computa-
tion" done in this "unit instruction" may be an
instruction decode, an (indirect) address computation,
or the actual execution of a machine instruction.
Several of these unit instructions comprise one com-
plete machine instruction.

The unit execution rate (UER) is the number of
unit instructions executed per unit time. In terms of
the service times Sm and Sp [9]

UER = m * [i - (l-Pm/m) k] / Sm
such that

Pm = i - (m/k) * (Sp/Sm) * [i - (l-Pm/m)k].
The analysis is split into three cases (bases upon the
relationship between Tp and Tw) which may be combined
to form composite equations for the service times as

Sp = TpSTw and Sm = Ta+Tw - (TwSTp) * (l-Pm/m) k
(where aSb = a-b if a>b, and aSb = 0 if aSb). The
complete equation for the unit execution rate is then

UER = m * [i - (l-Pm/m) k]

Ta+Tw - (TwSTp) * (l-Pm/m) k
where

Pm = 1 - (m/k) * (TpSTw) * [I - (l_Pm/m)k].

Ta+Tw - (Tw@Tp) * (l-Pm/m) k
In order to solve the Pm equation, we examine the two
cases Tp~Tw and Tp>Tw. In the first case Pm=l and
we are done. In the second case the denominator
simplifies to Ta+Tw, resulting in a k-th order poly-
nomial in Pm. Since the two sides of the equation are
monotonic in opposite directions on the interval [0,I],
for a given set of parameters we may solve for Pm in
this interval and obtain the UER from the first
equation above.

We extend this model by associating with each P.c
a cache memory with access time Tb and "hit ratio" Pb.
Tke effect of this addition is that with probability
Pb, the memory request will be satisfied in the cache
(hence no M.p service) while with probability l-Pb,
a normal memory cycle will be required. For the case
where TpaTw it has been shown [3] that

Sp = Pb*(Tp+Tb) + (l-Pb)*(Tp-Tw)
and

Sm = Pb*(0) + (l-Pb)*(Ta+Tw)
such that Pm equals

1 - m*[Pb*(Tp+Tb)+(l-Pb)*(Tp-Tw)] * [l-(l-Pm/m)k].
k * (l-Pb) * (Ta+Tw)

This new Pm equation has a single solution in the
interval [0,i] as in the previous case. We may
generalize this formulation to include the case
where Tp<Tw [6], but the memory being considered in
this model is relatively fast, so the case Tp~Tw is
sufficient, yielding

UER = m * [i - (l-Pm/m) k]
(l-Pb) * (Ta+Tw)

where Pm is determined from the above formula.

3.3 Modeling Multiple-Resource Systems
Previously, a unit instruction was defined in

terms of memory access frequency, with all other
aspects of the instruction being considered as
"processor activity", or Tp. Using the same analysis
as above we can determine the effects of multi-
processor contention for other shared resources by
extending the notion of a unit instruction to repre-
sent one "access" to a resource of any given class
(e.g. pipelined D.e's) followed by the average
processing time between requests for that resource
class. The period of time comprising one unit
instruction will, in all cases but for M.p, include
several machine instructions. For example requests
for floating-point multiplies occur in approximately

13% of the instructions for a scientific mix [6], such
that one unit instruction for the multiply resource
becomes 1/0.13 times the length of one machine
instruction.

When main memory is considered as the sole con-
tendable resource, the IER of a system is computed by
first estimating the UER of memory, then dividing by
the number of memory references per instruction. The
UER of memory is computed using Strecker's approxima-
tion which assumes an otherwise constant P.c processing
time. A similar set of assumptions will allow the UER
to be calculated for the floating-point multiply units
(or any other resource), given that some fixed value
can be derived for the remaining "processor activity"
between requests for the multiply units (of. section
3.4). The IER can then be calculated by dividing by
the frequency of multiply instructions.

In order to model the UER of other resources, the
parameters used in the contention model must be gener-
alized. Table 1 defines the set of resource conten-
tion parameters a-z which will be used in the remainder
of this paper. The correspondence in parameter names
for the memory interference example is given in the
table and is illustrated here functionally.

UER (k,m,Tp,Ta,Tw,Tb,Pb) = h(k,m,t,a,w,b,p)
Table 2 illustrates typical figures for these param-
eters applied to a variety of harware resources.

With the introduction of pipelined D.e's, the
number of stages v in the pipelines becomes of impor-
tance. So far we have assumed that all k P.c's
actively contend for the system's resources at all
times such that UER=h(k,...). In our machine model,
however, the P.c's are intentionally arranged into
time-phased rings of v P.c's each, so that they only
contend with corresponding P.c's from other rings on
the same time-slot, increasing the IER of the system.
If the system contains k P.c's which are all active,
then there are v separate contentions (one per time-
slice on the processor ring) among goups of k/v P.c's.
In this situation (for a single-resource system)
UER=V*h(k/v,...) such that

IER = v * h(k/v,m,t,a,w,b,p) / f.
Suppose now that some P.c's are idle such that

k is less than the total number of P.c's in the system.
The approximation above is optimistic in that it
assumes the k active P.c's to be optimally distributed
over the v time-slots. In particular, if k<v, it
computes the IER to be better than optimal! The
invalidating factor is that not all v time-slots
necessarily contain active processors. If we assume
the k active P.c's to be randomly distributed, then
c, the expected number of currently active time-slots,
may be determined as was the expected number of busy
memories:

c = v * [I - (l-i/v) k]
and hence

IER = c * h(k/c,m,t,a,w,h,p)~/f.

3.4 The Model for Combined Resources
We have shown how the UER of each resource class

may be determined, from which we calculate the'per-
formance measure IER=UER/f. In order to combine the
analyses of the individual resources, we normalize this
measure to the number of processors by the "processor
execution rate" PER=IER/k. We also define the "effec-
tive execution rate" EER=IER(k)/IER(1) which measures
the performance in terms of the number of effective
processors, and the "multlprocessor efficiency"
EFF=EER/k, which gives a direct measure of the
degradation caused by contention in the system.

We now combine the analyses of the individual
resources to form a model for the interacting effects
of contention. Consider a system of k processors with
n resource classes, each characterized by a set of
parameters (m,v,a,w,b,p} (e.g. Table 2). We calculate
the UER for each resource class i (assuming that we

know ti, the average time hetween the completion of

service and the generation of the next request for
resource i) by substituting the appropriate parameters
into

h i = h (z i , m i , t i , a i , w i , b i , P i) .
Allowing the unknowns z i and ti, an equation for L,

the expected length of one complete machine instruc-
tion, may be obtained from L=I/PER in terms of the UER
of the i-th resource:

I/L = (hi/fi) / z i

with zi, the average number of processors in contention
for resource i, being computed as

z i = k/c.1 where c i = v i * [i - (l-1/vl)k].
The remaining unknown t. was defined earlier

I
(for systems with t i a w i such that one unit instruc-

tion for class i has length ti+a i. (We have assumed

for simplicity that Pi=0. Otherwise a i may be re-

placed by the appropriate expression in a i, b i and

pi.) However, t i is not a function solely of the i-th

resource (as assumed earlier), but rather of the execu-
tion rates of the n-i other resources. Thus the
equation above contains two unknowns, L and t i. In

order to eleminate t., we repeat the above equation
I

for the n resource classes and add a constraint to
form a system of n+l equations in n+l unknowns
{tl,t2,...,tn,L}. The constraint is that L must be

the sum of the access times per instruction of each of
the n shared resources, plus the service time of the
non-shared resources in the skeleton processor (time
required todecode, index, and issue instructions).

To obtain an equation for this constraint, con-
sider the example of Figure 5. Shown is a six-
instruction sequence for a system with three resource
classes: two M.p modules, an add and a multiply unit.
(We assume an access time of 3 minor cycles and a
rewrite time of 2 minor cycles for M.p, for a major
cycle time of 8 minor cycles.) The time occupied by
cou~nunicatlon a i between the processor and each re-
source is shown by solid lines in the figure, with
dashed lines representing the other activities w.. i
Occasional delays di, represented by dotted-lines, are
caused when the requested resource is busy serving
requests from another processor (e.g. the first
multiply is delayed i major cycle). Requests to
functional units are sent on the last minor cycle of
the instruction, with the result available exactly
one major cycle later (cf. a2's and a3's and their
associated w2's and w3's) . The ske le ton p rocessor
looks only one instruction ahead and hence need not
worry about potential register conflicts. This was
also subsumed in our concept of a unit instruction.

The individual times may be summed in order to
form a constraint on the length of each machine in-
struction, as demonstrated in Table 3. The total
elapsed time for one unit instruction on resource i is

t i + a i + d i ,
where d I is the average delay due to contention for

the i-th resource. (Thus the table entries for t i may

be found by subtracting a i and d I from the total time

elapsed). We use this expression to determine an
expected value for the length of one complete machine
instruction L in terms of the i-th resource

L = (t i + a i + di) * fi"

The i-th resource occupies time (a i + di) *fi out of

each instruction, which may be solved from the equation

54

above to yield

(ai + dl) * fl = L - t i * fi"

If we let Lo be the time required per machine instruc-
tion by the skeleton processor, we have as our con-
straint equation n

L = Lo + E { L - ti*f i }.
~=I

This completes our system of equations, which has
a unique solution that may be determined numerically.
The knowledge of L imDlles that of PER as defined
previously and hence that of IER. The analytical
solutions thus achieved are in accordance with the
results from simulation presented in Table 4. The
example system in Table 2 was simulated, with resource
request frequencies determined by random draws from
four typical instruction mixes [6]. The resulting
instruction lengths are compared with the contention-
free instruction lengths computed by ignoring time
lost waiting for resources.

4. Summary and Conclusions

A general model of a large, tlghtly-coupled
multiprocessor system has been introduced and shown to
be capable of representing several recent design
proposals and realizations. It was then reduced to
a more specific model of a shared-resource multi-
processor for use in an analytical study of resource
contention. By examining first the problem of inter-
ference in main memory, we have been able to abstract
previous results [3,9] to find closed-form formulas
for the effects of contention in any individual
resource, on the assumption that the behavior of the
system with respect to all of its other resources is
known. Furthermore, we have combined the analyses of
the separate resources to form a more complete model
when processors contend for several resource classes
simultaneously.

Solving for this model yields a unique solution
which allows a prediction of performance and degrada-
tion in multiple-resource systems. Several hypotheti-
cal systems have been parameterized through the model,
and the iterative numerical solution has converged to
the correct processor execution rate in each case.
The performance estimates measured by this analysis
have been shown to be reasonable by simulation at the
instruction level, and it is anticipated that future
simulations of systems will make use of this result to
account for hardware resource contention while retaining
a high-level view of the systems being modeled.

References

[i] Anderson, D. W., Sparacio, F. J. and Tomasulo, R. M.
"The IBM System/360 Model 91: Machine Philosophy
and Instruction Handling" IBM J. of R. & D. ii:i
(Jan. 1967), pp. 8-24.

[2] Bell, C. G. and Newell, A. Computer Structures:
Readings and Examples McGraw-Hill, New York, N. Y.,
1971.

[3] Bhandarkar, D. P. "Analytic Models for Memory
Interference in Multiprocessor Computer Systems"
Ph.D. Dissertation, Carnegie-Mellon University,
Sept. 1973.

[4] Flynn, M. J. and Podvln, A. "An Unconventional
Computer Architecture: Shared Resource Multi-
processing" Computer 5:2 (March-Apr. 1972),
pp. 20-28.

[5] Gountanls, R. J. and Viss, N. L. "A Method of
Processor Selection for Interrupt Handling in a
Multiprocessor System" Proc. IEEE 54:12 (Dec. 1966)
pp. 1812-1819.

55

[6] Jensen, J. E. "Dynamic Task Scheduling in a
Shared Resource Multiproeessor" Ph.D. Disserta-
tion, Unlversity of Washington (in preparation).

[7] Pariser, J. J. "Multiprocesslng With Floating
Executive Control" IEEE Int. Cony. Record, 1965,
pp. 266-275.

[8] Skinner, C. E. and Asher, J. R. "Effects of
Storage Contention on System Performance" IBM
Systems J. 8:4 (1969), pp. 319-333.

[9] Strecker, W. D. "Analysis of the Instruction
Rate in Certain Computer Structures" Ph.D.
Dissertation, Carnegie-Mellon University, June
1970.

[i0] Watson, W. J. "The TI ASC -- A Highly Modular
and Flexible Super Computer Architecture" Proc.
AFIPS 1972 F.J.C.C., pp. 221-228.

[ii] Wulf, W. A. and Bell, C. G. "C.mmp -- A Multi-
Mini-Processor" Proc. AFIPS 1972 F.J.C.C.,
pp. 765-777.

Table i - Contention Model Terminology

Ta effective access time of M.p (service time)

Tw effective rewrite time of M.p (recovery time)

Tp average time between the completion of service on
one memory request and the generation of the next
request by P.c

Tb cycle time of fast buffer memory

Sm time required by M.p to service one request

Sp time beyond memory cycle required by P.c to
prepare the next request

Pb probability of finding the request in buffer

Pm probability that a request is queued at an M.p

a service (access) time of each resource (Ta)

b buffer speed for each resource (Tb)

c number of processor-ring time-slots containing
requests for each resource

d delay time caused by contention at each resource

f frequency of use for each resource (ratio of
requests per number of machine instructions)

h the contention function (UER)

i index to the various resource classes

k number of active processors (those to which tasks
are currently assigned)

L length of one machine instruction (inverse of IER
on one processor)

m number of resource units in each resource class

n number of resource classes

p probability of using buffer for each resource (Pb)

t time between completion of service on one request
for each resource and the generation of the next
request for that resource (Tp)

v number of stages in the functional-unit pipelines
for each resource (coincides with the number of
time-slices in the processor rings)

w recovery (rewrite) time for each resource (Tw)

z average number of processors in contention for
each resource

C

0

[...4

I

[-.I

0

d~ ~ ~ ~ o o ~ o

4.1
,!.

4.1

0

4J 0
o .H

U

I

-,7

59

~J
O~

o

I

c~

o% o%
C~ o 0 o 0 0 o 0

0

o , , , ,,, , o
--T

~ 0 0 o 0 0 0 0 0

~0 4-~ .,-4 -~ 0 ~

~ ~ ~ ~ ~ ~ I ~ ~ ~ ~

o

56

~0

o

<

I

L I

- -[--

i
e , i

, - . i

i
, . - i

-1
--I~I l~r

I

I

I ~

, ~, ,--~'i
I ~I i .i
L_~__, L__~_,

I I ~'
I I "~ ~-
I

J- I ~]

i , , . . I

[~. - _ 1 - 1

~) | | .
!

I _ .l. _

[~. 1 - [

f

n ~',~1~
I
I
!
I ^',
i

, I

I ~i

^ 1

~ v I
i i
: I ~ ,

ao:

,--i v

^

~ ^

~, ^ ~I ~

I
t
I

^ 1

I
I
!

I
I
I

I
I

I
I

I

oJ

1 I ~a

I
I
I

^1

I
I
I
!

^ 1

o

o

u

57

