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Abstract

Multi-Dimensional Auto-Vectorization of Stencil Codes

by Shrey Sharma

Vectorization is an important method for improving performance of data parallel com-

putations on architectures with SIMD support. It is commonly used for accelerating

scientific simulations, image processing, and multimedia applications. These applica-

tions often involve the computation of stencil kernels of single or multiple dimensions.

Most vectorization techniques involve selecting a single optimal dimension and vectoriz-

ing along that dimension to improve throughput. Recent work has shown improvements

in compute performance for 3D stencils when vectorizing in multiple dimensions. In this

thesis we build a framework that performs multi-dimensional vectorization efficiently by

reducing memory operations. In our experiments we observed average speedups of up to

1.37× in 2D stencil applications and up to 7.48× in the matrix transpose operation.
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Chapter 1

Introduction

Most modern computer architectures support Single Instruction Multiple Data (SIMD)

instruction sets, which operate on sets of data elements called vectors, as opposed to

single elements. SIMD instructions use vector registers in the hardware to read operands

and store results. Hence, they can simultaneously process elements up to the width of

available vector registers. However, writing efficient SIMD code is complex, tedious and

error prone. Optimizing compilers use the method of vectorization to convert scalar

code, which uses scalar instructions, into vector code, that uses the available SIMD

instructions.

Vectorization is commonly used for optimizing performance of stencil codes found in

solvers for scientific computations, image processing applications, and computational

fluid dynamics simulations. Stencil codes perform element-wise operations on arrays

where the value of each element in the output array depends on a fixed pattern of

neighboring elements in the input array. Generally, they involve multiple iterations over

the input array where the output of each iteration is used as input for the next one.

Since iterations over array elements are done using loop nests, loop vectorization is an

important technique for improving throughput of such programs. For example, the loop

nest in Figure 1.1(A) computes a single iteration of the Jacobi solver for a 9-point, two-

dimensional Jacobi stencil. Each element of B depends on nine elements of A as shown

in the stencil pattern in Figure 1.1(A).

Current state-of-the-art optimizing compilers vectorize along a single dimension of a

loop nest. The vectorization dimension can be specified by the programmer in the

source language or chosen automatically based on cost models in the compiler. The goal

is to process the maximum number of elements simultaneously while also minimizing

the cost of loading and storing data from and to memory. For a row-major, single-

dimensional memory layout, this is achieved by vectorizing along the innermost loop

dimension and using contiguous vector load and store instructions. In Figure 1.1(B),

1



Chapter 1. Introduction 2

we can see the Jacobi stencil from Figure 1.1(A) being vectorized along the j dimension

with a vectorization width of 8.

In stencil codes, we often have data overlap between neighboring iterations of the loops

that leads to expensive data reloads. In our example, the element A[2][1] is loaded

twice, once when computing B[2][2] and again when computing B[2][3]. The elements

towards the center of the input matrix can be loaded up to nine times – once for each

stencil point. Single-dimensional vectorization can reduce reloads by exploiting the

overlap between operand vectors in the middle row. In Figure 1.1(B) we see how six

memory loads and three shuffle operations give us the required operand vectors. When

the input size is large, the cost of reloading elements in the outer dimension is far greater

than that of reloading in the inner dimension. In order to reduce reload along the outer

dimension, one may consider outer loop vectorization. However, outer loop vectorization

would require expensive gather operations to load input elements as elements are not

stored contiguously along the outer dimension.

Multi-dimensional vectorization improves performance by reordering computations to

reduce reloads in multiple dimensions. We vectorize along the inner dimension with

a width of four elements and unroll two iterations of the outer loop to jam together

for a vectorization layout of 2 × 4 as shown in Figure 1.1(C). We load the elements

using contiguous loads along the inner dimension and perform shuffles to construct the

required operand vectors. Even though we do not reduce the number of memory loads

in each iteration when using this technique, the reduction in number of iterations in the

outer loop leads to fewer reloads overall. However, due to the added shuffles, we need

more vector registers to perform each iteration, which may lead to register spilling.

SIMD vector lengths have been increasing over the years with the recent Intel AVX-

512 standard having 64 vector registers that accommodate up to eight double precision

elements. Further, specialized vector hardware like the NEC SX-Aurora have vector

registers that can hold up to 256 double precision elements. For multi-dimensional

vectorization, we need such long vector registers as shorter registers would limit our

choices with respect to the vectorization layout.

Finding an efficient multi-dimensional vectorization layout is complicated due to the

trade-off between cost of memory loads and increased register pressure. Also, given a

vectorization layout, writing multi-dimensional vector code is difficult as current com-

pilers do not support multi-dimensional vectorization. However, for stencil codes that

have a regular grid-like access pattern we show that the process can be automated. In

this thesis we develop a framework that can analyze the scalar code for a stencil pat-

tern and generate efficient multi-dimensional vector code. Our framework analyzes the

memory access pattern in all dimensions of the input and forms groups of contiguous
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for (i=2; i<rows -2; i++) {

for (j=2; j<cols -2; j++) {

B[i][j] = 0.2 * (A[i][j]

+ A[i][j-2] + A[i][j-1]

+ A[i][j+2] + A[i][j+1]

+ A[i-2][j] + A[i-1][j]

+ A[i+2][j] + A[i+1][j]);

}

}

(A) Scalar code for 9 point 2D Jacobi stencil

for (i=2; i<rows -2; i++) {

for (j=2; j<cols -10; j+=8) {

u1 = *( double8 *)(&A[i-1][j]);

u2 = *( double8 *)(&A[i-2][j]);

d1 = *( double8 *)(&A[i+1][j]);

d2 = *( double8 *)(&A[i+2][j]);

ml = *( double8 *)(&A[i][j-2]);

mr = *( double8 *)(&A[i][j+2]);

c = __builtin_shufflevector(ml,mr ,2,3,4,5,6,7,12,13);

l1 = __builtin_shufflevector(ml ,mr ,1,2,3,4,5,6,7,12);

r1 = __builtin_shufflevector(ml ,mr ,3,4,5,6,7,12,13,14);

res = 0.2 * (u1 + u2 + d1 + d2 + ml + mr + c + l1 + r1);

*( double8 *)(&B[i][j]) = res;

}

}

(B) Vectorized code along the j dimension with vector width 8

for (i=2; i<rows -4; i+=2) {

for (j=2; j<cols -6; j+=4) {

uh = *( double8 *)(&A[i-2][j]);

ul = *( double8 *)(&A[i-1][j]);

dh = *( double8 *)(&A[i+2][j]);

dl = *( double8 *)(&A[i+3][j]);

m1 = *( double8 *)(&A[i][j-2]);

m2 = *( double8 *)(&A[i+1][j-2]);

u2 = __builtin_shufflevector(uh ,ul ,0,1,2,3,8,9,10,11);

u1 = __builtin_shufflevector(ul ,m1 ,0,1,2,3,10,11,12,13);

c = __builtin_shufflevector(m1,m2 ,2,3,4,5,10,11,12,13);

d2 = __builtin_shufflevector(dh ,dl ,0,1,2,3,8,9,10,11);

d1 = __builtin_shufflevector(m2 ,dh ,2,3,4,5,8,9,10,11);

l1 = __builtin_shufflevector(m1 ,m2 ,1,2,3,4,9,10,11,12);

l2 = __builtin_shufflevector(m1 ,m2 ,0,1,2,3,8,9,10,11);

r1 = __builtin_shufflevector(m1 ,m2 ,3,4,5,6,11,12,13,14);

r2 = __builtin_shufflevector(m1 ,m2 ,4,5,6,7,12,13,14,15);

res = 0.2 * (u1 + u2 + d1 + d2 + l2 + l1 + c + r1 + r2);

*( double4 *)(&B[i][j]) = *( double4 *)(& res);

*( double4 *)(&B[i+1][j]) = *(( double4 *)(& res) + 1);

}

}

(C) Proposed multi-dimensional vectorized code

Figure 1.1: Loop nests for 9-point 2D Jacobi stencil: scalar (A), 1D vectorized (B),
2D vectorized (C)
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memory accesses so that they can be accessed using SIMD memory instructions to speed

up execution.

1.1 Contributions

The contributions of this thesis are as follows:

• We developed the tensor shape analysis as an extension of divergence analysis [1, 2]

to multi-dimensional loop nests. The analysis computes tensor shapes [3] for all

instructions in a loop nest.

• We show how memory accesses in multiple dimensions can be grouped together

using analyses like Scalar Evolution [4] to generate efficient vector code for multi-

dimensional stencil codes. Memory access grouping enables us to reduce memory

traffic by replacing multiple scalar memory accesses by a single vector memory

access.

• We implemented our approach as a fork of Region Vectorizer [5] called TensorRV.

Our framework takes scalar LLVM IR code, a vectorization layout and a memory

data layout as input and generates efficient multi-dimensional vector code. We

evaluated TensorRV on some common 2D stencils with default memory data layout

as well as transformed data layouts. We also evaluated our framework for the

matrix transpose operation with the default memory layout. We observed average

speedups of up to 1.37× for stencil benchmarks and 7.48× for matrix transpose in

our experiments using AVX-512 as our target SIMD ISA.



Chapter 2

Background

In this chapter we discuss the technical concepts and background information associated

with this thesis. We first discuss the LLVM framework and why it is suitable for our

implementation. We then give an overview of the Region Vectorizer framework which

we extend for our prototype. Finally, we discuss the Scalar Evolution [4] analysis and

the SCEV representation that we use to model memory groups.

2.1 LLVM

LLVM [6] is an open-source compiler development framework. LLVM-based compilers

have a three-phased design. The frontend is responsible for parsing, validating and

converting source code to the LLVM intermediate representation (LLVM-IR). The op-

timization phase contains various analyses and transformations for the LLVM-IR code.

Finally, the backend phase is used for optimizing the code for different target platforms

and generating assembly code. This modular design makes it easy to support new lan-

guages and architectures. To create an LLVM-based compiler for a new language, we

only need to build a frontend for it. Similarly, new target platforms can be added to the

framework by creating backends for them.

The core of the framework is the LLVM-IR code representation. It is based on the Static

Single Assignment (SSA) [7] form that ensures that all variables are defined only once

and that the program points of their use are always dominated by their definition. Loops

are represented using branches and labels. All non-branching code is grouped in a basic

block and is executed unconditionally. Control flow is represented using conditional or

unconditional branches at the end of basic blocks.

In our implementation, we vectorize scalar LLVM-IR and generate vectorized LLVM-

IR. We rely on LLVM’s backend to generate the assembly code for our target platform.

5
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LLVM also features a Scalar Evolution analysis which is important for the memory

access grouping phase of our framework.

2.2 Region Vectorizer

The Region Vectorizer (RV) [5] is a vectorization framework for LLVM. RV vectorizes

code regions from loop nests to whole functions. It supports both inner and outer loop

vectorization. RV performs a divergence analysis [1, 2] on the input scalar code region

to figure out the divergent branches in its Control-Flow Graph. This information is then

used for code generation. We extend RV’s divergence analysis to multiple dimensions

to build our tensor shape analysis. We also build upon its code generation phase to

generate multi-dimensional vectorized code.

2.3 Scalar Evolution

The Scalar Evolution [4] analysis computes a closed form representation for the evolution

of integer variables in a loop nest. It represents this information in the form of a SCEV.

SCEVs are typed based on the kind of mathematical expressions they represent. The

smallest building blocks are SCEVConstant for constant values and SCEVUnknown for

variables with unknown values at compile time. Mathematical expressions like addition

or multiplication are represented as SCEVAddExpr or SCEVMulExpr. These expressions

are recursively defined using other SCEV expressions. There is support for arithmetic

operations like addition, substraction, multiplication and unsigned division. The analysis

also supports the normalization of SCEVs into a canonical form.

Scalar Evolution is commonly used for analyzing loop nests as it detects the iteration

variables and provides a SCEVAddRecExpr for their change during loop execution. A

SCEVAddRecExpr represents an add recurrence of the form

{< base >, +, < stride > }

The base value represents the value at the first loop iteration and the stride represents

the increase in every following loop iteration. Consider the loop nest in Figure 2.1. We

see two memory accesses, the first is to a single-dimensional array A and the second is

to a two-dimensional array B. Both arrays are of type int.
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for(int i=1; i<rows; i++) {

for(int j=0; j<cols; j++) {

A[i] = i;

B[i-1][j] = j;

}

}

Figure 2.1: Loop nest with memory accesses

The SCEV for the memory access to array A is given by:

{ (4 + %A)︸ ︷︷ ︸
base

, + , 4︸ ︷︷ ︸
stridei

} < loopi >

Here, %A represents the address of the pointer to the base of array A. The stride is of 4

bytes which is the size of the int type. The base is shifted by 4 bytes from the beginning

of array A because loop dimension, i, starts iterating at index 1. This SCEV tells us

that for every iteration of the outer loop, the value of the address of the memory access

to array A increments by a stride of 4 bytes starting with the base value of (4 + %A).

For the two-dimensional array B, the SCEV for the memory access is given by:

{{%B, + , (4 ∗%cols)︸ ︷︷ ︸
stridei

} < loopi >, + , 4︸ ︷︷ ︸
stridej

} < loopj >

There are two add recurrences involved in this expression. The inner add recurrence

forms the base of the outer add recurrence. The inner add recurrence represents the

increase, (4 ∗ %cols) bytes, in the value of the pointer to array B, with every iteration

of the outer loop dimension, i. The outer add recurrence represents the increase in the

value of the pointer to array B for every iteration of the inner loop dimension, j.

The memory access grouper in our framework, uses SCEVs for grouping memory ac-

cesses. The constant offsets between addresses of memory accesses are computed using

SCEV expressions.





Chapter 3

Multi-Dimensional

Vectorization

In this chapter we discuss the motivation behind multi-dimensional vectorization and

how it differs from single-dimensional vectorization when applied to stencil applications.

We then discuss the existing techniques that perform multi-dimensional vectorization.

Finally, we give an overview of the various factors that influence the performance of

multi-dimensional vectorization.

3.1 Overview

Multi-dimensional vectorization extends loop vectorization to multiple dimensions. It

involves vectorizing along two or more loops in a loop nest and can improve performance

of multi-dimensional stencil applications. In such applications, each element of the re-

sultant matrix depends on elements from multiple dimensions of the input matrix. Since

memory in modern computers is single-dimensional, elements in the outer dimensions

of the input matrix are always non-contiguous and cannot be accessed using fast vector

memory accesses. For larger input matrices, when the size is too large for the elements

to fit into the caches, reloading elements from the outer dimensions becomes significantly

expensive. Multi-dimensional vectorization reduces data reloads in multiple dimensions,

thereby reducing the execution time of such applications.

Consider the 9-point 2D Jacobi stencil in Figure 3.1(A). If we vectorize it in a single

dimension with a vectorization width of 8, we get the iteration pattern in the input

matrix as shown in Figure 3.1(B). If we do it without using shuffle operations to reuse

loaded elements shown as in Figure1.1(B), we would need nine vector loads and one

vector store to perform each iteration. We see that the elements of the second row

9
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are loaded twice, first when computing the results for the third row and again when

computing the results for the fourth row.

for(i = 2; i<rows - 2; i++){

for(j = 2; j<cols - 2; j++) {

B[i][j] = 0.2 * ( A[i][j]

+ A[i][j-2] + A[i][j-1]

+ A[i][j+2] + A[i][j+1]

+ A[i-2][j] + A[i-1][j]

+ A[i+2][j] + A[i+1][j] );

}

}

(A)

j

i

(B)

Figure 3.1: Scalar code for 9-point 2D Jacobi stencil (A) and its iteration pattern
when vectorized along inner loop with a vectorization width of 8 (B)

Using existing techniques, the above stencil can be vectorized in multiple dimensions by

either modifying the code to process multiple rows of the matrix in the same iteration

or by modifying the data layout to store elements from multiple rows contiguously. We

discuss both approaches in the following sections.

3.1.1 Register Tiling

When using register tiling, we first vectorize along the inner dimensions like for single-

dimensional vectorization. Next, we unroll some iterations of the outer loop and jam

the resulting inner loops together. For our Jacobi stencil, if we unroll two iterations of

the outer dimension we get the iteration pattern as shown in Figure 3.2. This would

require 14 vector loads and two vector stores. In single-dimensional vectorization the

same computation would have required 18 vector loads and two vector stores. Due to

the contiguous data access pattern of the stencil, we can reuse four operand vectors

from the data loaded for the first of the two outer loop iterations that we unroll. This

reduces the memory accesses for the second unrolled iteration to five vector loads and

one store. Also, the elements of the second row are loaded only once in this case, since

the results for the third and fourth row are computed in the same iteration. Each
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j

i

Figure 3.2: Iteration pattern for stencil from Figure 3.1(A) when vectorized in mul-
tiple dimensions using register tiling.

iteration now computes results for 16 elements of the output matrix as opposed to 8 in

single-dimensional vectorization. By unrolling more iterations of the outer loop, we can

process even more elements per iteration. However, by doing so, we would also increase

the number of vector registers required per iteration. For larger stencils, the increase in

register pressure may lead to register spilling. This technique is also not well suited for

stencils that access data non-contiguously or with larger strides in each dimension as

this would reduce the amount of reuse that we get when unrolling multiple outer loop

iterations.

3.1.2 Vector Folding

Vector folding [8] involves storing blocks of elements from multiple dimensions contigu-

ously as opposed to the standard single-dimensional data layout. The layout of these

blocks or vector folds is determined by the multi-dimensional vectorization layout. The

only requirement is that the size of each block must be equal to the vectorization width

available on the hardware platform. For a 2D matrix, a vector fold of 2×4 would require

a data layout transformation as shown in Figure 3.3.

Each vector block can be loaded by a single vector load operation. Operand vectors that

contain elements from neighboring vector blocks are called unaligned operand vectors.

For such memory accesses, we need to load both neighboring blocks and perform shuffle

or permute operations to build operand vectors. The shuffle operations are faster than

vector loads but require more vector registers.

For our example from Figure 3.1(A), vectorizing using vector folding would give us the

iteration pattern as shown in Figure 3.4. We would need six vector loads, two stores

per iteration with seven permute operations for the unaligned operand vectors and two

for the unaligned result vector. Due to the 2 × 4 layout, the elements in the two rows

on top and bottom of the input elements in every iteration are unaligned and we would
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0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 . . .
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 . . .
2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 . . .
3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 . . .

(A)

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 0,4 0,5 0,6 0,7 1,4 1,5 1,6 1,7 . . .

(B)

Figure 3.3: 2D input matrix with vector folds of size 2× 4 (A), and its corresponding
single-dimensional memory representation (B)

have to load two neighboring vector folds for each of them. We process eight elements

per iteration as in the single-dimensional case but we use comparatively fewer memory

operations for the same. Also, the second row would not be reloaded in this technique.

Yount[8] has shown in his experiments that vector folding outperforms single-dimensional

vectorization for 3D stencils when optimizing for instructions per cycle.

j

i

Figure 3.4: Iteration pattern for stencil from Figure 3.1(A) when vectorized in mul-
tiple dimensions using vector folding

However, this technique requires transforming the data layout before and after the com-

putation. Hence, it is not preferable when we do not perform multiple time-step itera-

tions over the input matrix. Also, similar to register tiling, it is not efficient for stencils

that have non-contiguous and strided access patterns.

The techniques discussed above require computing an efficient vector fold or a vector-

ization layout that would lead to faster overall execution. This depends on the input

stencil pattern and the hardware platform used. In the following sections we discuss the

influence of these two factors.
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3.2 Influence of the Stencil Pattern

Stencil code can be described by its properties like number of dimensions, order, number

of points and data access pattern. These properties play an important role in determining

an efficient vectorization layout. We discuss these properties and their influence on the

vectorization layout in the following.

(A) 3D, 2nd-order,
7-point Jacobi stencil

(B) 2D, 4th-order,
5-point stencil

(C) 2D, 4th-order,
25-point Seidel stencil

Figure 3.5: Stencils with different dimensions, orders, data access patterns and num-
ber of points.

• Dimensions: The dimensions of a stencil are needed to select the dimensions to

vectorize. Similar to tiling based approaches, the reordering of computations in

multi-dimensional vectorization leads to faster execution than single-dimensional

vectorization when there are data dependencies in multiple dimensions. If there

are no dependencies in a given dimension of the input array, vectorizing along it

cannot get us more reuse of loaded data.

• Order: The order of a stencil gives us an idea of the distance up to which we

can exploit the reuse in each dimension. In Figure 3.5(C), we see that in both

dimensions of the stencil, we have elements up to a distance of two from the

central element. By vectorizing using a 2 × 4 layout, we can exploit reuse of two

elements in the outer loop while benefiting from contiguous loads of four elements

in the inner loop.

• Data access pattern: The data access pattern indicates how the points in a

stencil are spread out in the input matrix. In Figure 3.5, we have two stencils with

contiguous data access (Figure 3.5(A) and Figure 3.5(C)) and one stencil (Figure

3.5(B)) with a strided data access with a stride length of 2. For the stencil in

Figure 3.5(B), vectorizing with a layout of 2× 4 would not get us any reuse in the

outer dimension because the stride length is 2. We need to vectorize further in

that dimension to get an overlap of accesses between consecutive iterations.

• Number of points: The total number of points in a stencil is useful for estimating

the number of vector registers that would be needed for each iteration. For stencils

with more points, it is better to avoid techniques that require complex shuffle

operations as this would further increase register pressure.
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The dimensions of the stencil are also important for data layout transformations. For

single-dimensional stencils, the default single-dimensional data layout is efficient while

for stencils in two or more dimensions, we would need a data layout transformation to

speed up memory operations.

3.3 Influence of the Hardware Platform

We need to consider the number of available vector registers, their width and available

SIMD instructions in our target hardware platform. The width of vector registers limits

the number of choices we have for vectorization. For example, with a width of 8 elements

we can have layouts such as: 1× 8, 2× 4, 2× 2× 2, 4× 2, 8× 1. A vectorization width

of 4 elements gives us a multi-dimensional layout of 2 × 2 only. The number of vector

registers helps to account for register pressure. In systems with more vector registers,

we can use larger vectorization layouts. Conversely, if we do not have extra registers

beyond those required for the stencil operands, we need to limit the number of shuffle

operations or reduce the dimensions of our vectorization layout. In multicore execution,

large vectorization layouts may lead to more misses in the shared cache. In systems that

do not support efficient shuffling of values between registers, it might be more efficient to

use the register-tiling-based approach that requires loading values directly from memory

as opposed to shuffling.

In the next chapter we discuss the fundamental concepts of our framework and the

analyses that it performs for efficient code generation. Our framework tries to combine

ideas from the existing approaches to multi-dimensional vectorization. We mainly focus

on reducing memory accesses and replacing multiple scalar memory operations by a

single vector operation where possible. The different factors influencing the stencil

computation help us to understand the results of our experiments later in the Evaluation

chapter.
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Our Framework

In this chapter we discuss our approach to multi-dimensional vectorization and the

various concepts associated with our framework. We first discuss our representation for a

multi-dimensional vectorization layout followed by the analysis phases of our framework:

vectorization analysis and memory access grouping. We also take a look at data layout

transformations and how they affect the performance of stencil applications.

4.1 Vectorization Layout

In single-dimensional vectorization, the vectorization width often referred to as vector-

ization factor determines the number of elements that are processed simultaneously. For

stencil codes without loop carried dependencies, this is often the maximum number of

elements of the input datatype that can be fit into a vector register of the system. For

multi-dimensional vectorization, we use the Tensor Brush [3] to represent the vectoriza-

tion layout.

For a loop nest with d loops, the tensor brush is defined as,

B = (m0 × · · · ×md−1)

Here, mi ∈ N is the size of the brush in the ith dimension of the loop nest. The

dimensions are indexed starting from the outermost loop with index 0, moving inwards

to the innermost loop that has the index (d− 1). The product of brush sizes from all

dimensions gives us the effective vectorization width.

Each loop in a loop nest has a corresponding brush size. For loops that are not being

vectorized, we set the brush size to 1. In a loop nest with three loops, if we vectorize

along the inner two loops with a vectorization layout of 2 × 8, our tensor brush would

be 1× 2× 8.

15
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4.2 Brush Projections

While the tensor brush is useful for representing multi-dimensional operand vectors and

how they relate to loop nests, for code generation, we need to compute a mapping

between our multi-dimensional tensor brush and single-dimensional hardware vector

registers. We define a brush projection (PB) as a unique mapping from tensor brush

coordinates to single-dimensional vector lanes in a vector register. The projection is

defined by a projection vector P(i0,..,id−1) where (i0, ..., id−1) are the dimension numbers

in the tensor brush. Depending on the ordering of these dimension numbers, we can

choose the order of expansion of the tensor.

P(i0,i1,..,id−1)(c0, .., cd−1) =

{
ci0 if d = 1

ci0 + mi0P(i1,..,id−1)(c0, .., cd−1) if d > 1

}
(4.1)

Equation 4.1 defines a projection from coordinates (c0, .., cd−1) to vector lanes where the

brush is given by B = (m0 × · · · ×md−1) and P(i0,i1,..,id−1) is the projection vector.

1

0 (0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)

(A)

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3)

0 1 2 3 4 5 6 7

(B)

Figure 4.1: Brush layout for a vectorization brush of 2× 4 (A) and its corresponding
vector lane mapping with P(1,0) (B)

For example, in Figure 4.1(A), we see a tensor brush of 2× 4 with the coordinates of its

elements. For a row-major single-dimensional layout we use a projection brush of P(1,0)
to get the projection as shown in Figure 4.1(B).

4.3 Outline of Our Framework

Our framework aims at reducing memory traffic to improve the efficiency of the gener-

ated multi-dimensional vector code. To this end, we group contiguous memory accesses

together so that they can be replaced by vector memory accesses. We use analyses to

compute the data access pattern in every vectorized iteration of the input loop nest.

We do not limit ourselves to vectorization layouts that are at least as wide as the size

of vector registers in the innermost dimension like register tiling. If the vectorization
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layout has a width in the innermost dimension equal to or larger than the size of the

vector registers, we get a layout similar to the register-tiling-based approach. On the

other hand, if the width of the innermost dimension in our vectorization layout is smaller

than the width of the vector registers, we perform shuffle operations to pack elements

from multiple vector memory accesses into a single vector operand register. For certain

stencils, the default single-dimensional data layout is not the most efficient one. Our

framework supports transforming the memory addresses from scalar code into the trans-

formed data layout. However, we do not use data layout transformation as a means of

performing multi-dimensional vectorization like vector folding [8].

For a given stencil application code and a vectorization layout, our framework generates

efficient multi-dimensional vector code in three phases: First, we analyze the vector

shape [9] along each dimension of the loop nest and assign vector shapes to each in-

struction. Next, for each assignment statement, we group all required memory accesses

into contiguous groups. If the memory data layout is not the default single-dimensional

layout, we compute the corresponding transformed memory addresses and store them

into the respective memory groups. Finally, we generate vector code for all instructions

in the loop body. In the following sections we discuss the first two phases and associated

concepts. Code generation is discussed in the next chapter with the implementation

details of our prototype TensorRV.

Scalar LLVM IR

Tensor Brush

Data Layout

Tensor Shape

Analysis

Mem. Access

Grouper

Code

Generator

Vectorized LLVM IR

Figure 4.2: An outline of our framework

4.4 Tensor Shape Analysis

The tensor shape analysis as presented in our previous work [3] determines the relation-

ship between instructions in the loop body and the iteration variables of its surrounding

loops. For each loop dimension in a loop nest, the analysis computes how the values of

instructions that involve its iteration variable evolve with each iteration of the particular
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loop. For a single loop dimension, the analysis stores a vector shape of type,

T1D = Z ∪ {>}

The set of d-dimensional tensor shapes T d, can be defined as the composition of d one

dimensional vector shapes:

T d = (T1D)d

The vector shape, si ∈ T1D, of an instruction for a particular loop dimension, i, is a non-

zero integer if its value increments by that integer value in every iteration of that loop

dimension. The instruction is considered to be strided with a stride length of si along the

ith loop dimension. If si = 0, it indicates that the instruction is invariant to the change

in the value of the iteration variable, it is uniform along the ith loop dimension. If si is

>, the instruction is considered to be varying in the ith dimension but the variation is

unknown. An example of such an instruction is an access to some array location with

the iteration variable as the array index. The variation in this case depends on the

contents of the array at that index, which are usually unknown at compile time.

The iteration variables themselves are invariant in dimensions other than their own loop

dimension. The vector shapes in each loop dimension constituting the tensor shape T d

are similar to partial derivatives of a function. The vector shapes together give us the

change in instruction value based on all surrounding loops just as the partial derivatives

of a multivariate function together give us its derivative.

For each iteration variable, the vector shape in its own dimension is given by the in-

crement value of the loop. This initial value is then propagated to all instructions in

the loop nests for computing their shapes. Affine combinations of iteration variables in

instructions are represented by strides in the tensor shape. The analysis assumes that

there are no loop-carried dependencies between the instructions.

Consider the loop nest in Figure 4.3(A) and its corresponding tensor shape values in

Figure 4.3(B). The computed value of a is propagated to the statement computing the

value of b which in turn is propagated to the access of array C.

Tensor shapes tell us how an instruction’s value changes across iterations of the scalar

loop nest. In stencil codes we also have to consider the data access pattern within the

same iteration of the loop when grouping memory accesses. This is implicitly handled

by the memory access grouper by computing relative offsets of all accessed elements of

an input matrix from its base address.
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for (i = 0; i < m; ++i) {// dim 0

for (j = 0; j < n; j += 2) {// dim 1

for (k = 0; k < w; k += 4) {// dim 2

2 * i - 3 * j;

a = j * n + k;

b = A[a];

C[b];

}

}

}

(A) 3D loop nest.

Statement Tensor shape T d

i (1, 0, 0)
j (0, 2, 0)
k (0, 0, 4)

2 * i - 3 * j (2,−6, 0)
a = j * n + k (0,>, 4)
b = A[a] (0,>,>)
C[b] (0,>,>)

(B) Initial tensor shapes (upper half) and,
Tensor shapes computed by the

tensor shape analysis (lower half) .

Figure 4.3: A 3D loop nest (A) and its corresponding tensor shapes (B).

4.5 Memory Access Grouping

In stencil applications, expanding scalar memory accesses to their tensor layout, as per

the tensor brush, gives us overlapping elements between neighboring operand vectors.

Our framework groups the addresses of these elements into contiguous memory groups

that can be accessed using fast vector memory instructions in the code generation phase.

n

s

w ec

(A) 2D, 2nd-order,
5-point Jacobi stencil

L R
L R

(B) Vectorized using
2× 4 layout.

L R

L R

(C) Computed
Memory Groups

L
L

R
R

w
n

c
s

e

(D) Expanded brush for each operand from stencil in (A).

Figure 4.4: Overlapping accesses (D) in vectorized brush layout (B) of 5-point Jacobi
stencil (A) being put into memory groups (C).

Consider the 5-point Jacobi stencil in Figure 4.4(A) and its expanded brush layout in

Figure 4.4(B). In Figure 4.4(D) we show the individual expanded operand vectors for

each point of the stencil. For the points n and c we see that the top four elements in

the vector expansion of c are the same as the bottom four in the expansion of n. This

is referred to as an overlap between the brush expansions of points n and c. Between

the points w and c or e and c we get a larger overlap of six elements. These overlapping
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elements are shuffled to form the different operand vectors after they are loaded into

memory.

The memory access grouper fits elements whose addresses differ by a constant less than a

pre-determined group size (sg) into a single group. For our example, we get four memory

groups as shown in Figure 4.4(C). Each vector memory access can process elements up

to the width of vector registers. Hence, one would expect the group size to be equal to

the width of a vector register (svr). However, this can lead to ambiguity when adding

elements to memory groups. For elements that are at a distance greater than or equal

to svr from the first elements of existing memory groups, we create a new group. For

elements that are at a distance less than svr, we add them to the matching group. When

the group size is equal to svr, we may end up with situations where an element can be

added to more than one group. To avoid this ambiguity, we set the group size to twice

the vector register size.

If there are gaps in the group or if the group has more elements than the vector register

size, in the code generation phase, the group is broken down into chunks that can be

loaded using vector memory instructions. For transformed data layouts, we add elements

to groups after converting their addresses to the new layout.

4.6 Data Layout Transformation

The goal of data layout transformation is to reduce the number of shuffle operations

and memory loads per iteration. We transform the layout of our matrices by storing

elements from multiple dimensions contiguously as discussed in Section 3.1.2. Since this

process requires shuffles to compute non-aligned operand vectors, it is unsuitable for

systems that do not support efficient shuffle operations. For computing an efficient data

layout, we need to consider both the stencil pattern and the vectorization layout.

In contrast to vector folding where the size of the vector folds must be equal to the

width of vector registers, our framework supports arbitrary data layouts. We also do

not require the data layout to be the same as the vectorization layout. The framework

itself does not compute an efficient data layout or perform data layout transformation

on the operand matrices. If the input data is stored in a different data layout than the

default on the target platform, the framework transforms the addresses of the vectorized

memory accesses into the new layout before adding them into the memory access grouper.

We represent data layouts using the Data Brush. It is similar to the Tensor Brush

defined in Section 4.1. For example, in the 2D Jacobi example from Section 3.1.2, we

used a data brush of 2× 4 with a vectorization layout of the same size. We needed six
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vector loads, two stores per iteration with seven shuffle operations for unaligned operand

vectors and two for the unaligned result vector. If we use a data brush of 2 × 2 with a

vectorization layout of 2× 4 for the same stencil, we can load all the required elements

in four vector loads and the required number of shuffles is also reduced to five. This

is due to the fact that in a 2 × 2 layout, the two top and bottom rows are no longer

unaligned and can be loaded directly from memory. The result vector can also be written

to memory without shuffles as it is also not unaligned.

In general, for multi-dimensional vectorization, increasing the size of the memory blocks

or vector folds would reduce the number of memory accesses needed per iteration when

compared to the default single-dimensional memory layout. However, if the size of

the data layout in a given dimension is larger than the order of the stencil or the

size of the tensor brush in that dimension, we have to load unaligned memory blocks,

which increases the required number of shuffles. For larger memory blocks, constructing

operand vectors may need multiple shuffles per operand vector due to alignment issues.

In the next chapter we discuss the implementation of our prototype using the LLVM

framework. The information collected by the tensor shape analysis described in this

chapter is used for driving code generation of each instruction in the loop body. De-

pending on the shape of the instruction, we decide on which instructions to emit for it.

The memory groups are the core of our framework’s optimization technique. We reduce

memory traffic by loading each memory group only once using fast vector instructions.

We discuss the implementation of the memory access grouper and describe the code

generation phase of our framework.
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TensorRV

In the last chapter we talked about our framework for multi-dimensional vectorization

and the fundamental concepts associated with its different phases. In this chapter we

describe the implementation of our framework in LLVM as a fork of the Region Vec-

torizer (RV) project. We discuss the design of the memory access grouper using Scalar

Evolution and the techniques used to transform memory addresses from one memory

data layout to another. We end the chapter with a discussion of the code generation

phase of our framework.

5.1 Implementation of Tensor Shape Analysis

Our prototype, TensorRV, extends RV’s analyses and code generation to support multi-

dimensional vectorization. The prototype takes scalar LLVM IR code along with a

vectorization layout and a memory data layout as input and emits vectorized LLVM IR

that can be compiled to different target platforms by LLVM’s backend phase.

We extend RV’s divergence analysis to multiple loop dimensions in order to implement

the Tensor Shape Analysis from Section 4.4. The analysis begins by initializing shapes

for all the loop iteration variables from their increments. We then process each loop

dimension one by one using a worklist based algorithm to process the instructions in the

loop body. For each loop dimension, we initialize the worklist with all instructions in

the loop body whose value depends on its iteration variable. For each instruction in the

worklist, we compute its shape in that loop dimension and add all instructions that use

its value to the worklist. The algorithm terminates when the worklist is empty.

In the following sections, we discuss the memory access grouper followed by the code

generator of our framework.

23



Chapter 5. TensorRV 24

5.2 Memory Access Grouper

The memory access grouper groups addresses of memory accesses that are required for

each assignment statement. For simplicity, we limit our loop bodies to a single assign-

ment statement in our prototype. Hence, in our implementation, it groups addresses of

memory accesses in each iteration of our vectorized code.

The memory access grouper maintains two data structures. The first is the set of memory

groups. Each group contains memory addresses that can be loaded contiguously. The

second is a mapping between the SCEV of each memory address required in the vector

code and its corresponding vector lane in the brush projection of the tensor brush. Both

data structures depend on the computation of SCEVs as discussed below.

for (int j=1; j<rows -1; ++j) {

for (int i=1; i<cols -1; ++i) {

B(j,i) = + .2 * A(j-1, i) +

.2 * A( j,i-1) + .2 * A( j, i) + .2 * A( j,i+1) +

+ .2 * A(j+1, i);

}

}

Figure 5.1: Loop nest for 5-point, 2D Jacobi stencil

Consider the loop nest in Figure 5.1. It computes an iteration of a 5-point, 2D Jacobi

stencil on matrices of type double. The SCEV of the central element in the stencil,

A(j,i) is given by,

{{(8 + (8 ∗ %cols) + %A), + , (8 ∗ %cols)} < loopj >, + , 8} < loopi >

We can deduce the stride in each dimension of the input matrix from the stride value

for each loop dimension. For the inner dimension, i, it is 8 bytes and for the outer

dimension, j, it is (8 ∗ %cols) bytes.

Now, if we consider the SCEV expression in the base part of the inner add recurrence,

(8 + (8 ∗ %cols) + %A)

we see that the stride lengths in both dimensions are added to the base address of

array A. This is done because the first iteration of the loops starts at index 1. Similarly,

the SCEV for A(j,i+1) is given by,

{{(16 + (8 ∗ %cols) + %A), + , (8 ∗ %cols)} < loopj >, + , 8} < loopi >
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In this case, the SCEV expression in the base part of the inner add recurrence has

increased by 8 bytes. Hence, we can generate SCEVs for addresses in the neighborhood

of an element of array A by using the strides and the SCEV for the element.

Using the coordinates from the tensor brush, and the SCEV for each memory access

in the scalar code, the memory grouper generates SCEVs, similar to the ones we saw

earlier, for all elements required for the vectorized code. These SCEVs are used for

building memory groups and are also stored in the mapping between SCEVs and vector

lanes.

When adding a new address to the set of memory groups, we compute the difference

between the new address and the first elements in the existing groups. If the difference is

less than the group size for a particular group, the element gets added to it. Otherwise,

we create a new group for it.

5.2.1 Addressing Transformed Data Layouts

During data layout transformation, the input matrix is divided into multiple blocks or

vector folds which are stored contiguously. In Figure 5.2(A) we have a 2D matrix that

is transformed using a data layout of 2× 2. We represent the transformed matrix in 2D

as shown in Figure 5.2(B).

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7
2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7
3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

(A)

0,0 0,1 1,0 1,1 0,2 0,3 1,2 1,3 0,4 0,5 1,4 1,5 0,6 0,7 1,6 1,7
2,0 2,1 3,0 3,1 2,2 2,3 3,2 3,3 2,4 2,5 3,4 3,5 2,6 2,7 3,6 3,7

(B)

Figure 5.2: 2D matrix (A) and its 2× 2 data layout transformed version (B)

In the transformed matrix, we divide the number of rows by two and multiply the

number of columns by two since elements from two rows are stored in one row. The

addressing works by first locating the block in the transformed matrix and then pointing

to the element in the block. This simplifies the computation of the transformed address

as explained below.
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We compute the transformed address of an element by first computing the index of the

block to which it belongs and then adding the offset of the element inside the block. The

block index (b0, ..., bd−1) of an element having indices (ind0, ..., indd−1) in a d-dimensional

matrix having blocks of size (sb0 , ..., sbd−1
) is computed by,

∀ bi ∈ (b0, ..., bd−1), bi =
indi
sbi

The offset of the element inside the block is computed using brush projections as defined

in Section 4.2. For example, for the element (3, 3) in the matrix in Figure 5.2, the block

offset is (1, 1) and the offset of the element inside the block is 3. We use a projection

brush of P(1,0) for the 2× 2 data brush.

The bounds of the iteration variables of our loop nest are modified for the transformed

matrix as per the new representation. Hence, for dimensions other than the innermost

one, the loop bound is divided by the block size in that dimension. The strides of the

iteration variables are also adjusted to step between blocks. In the earlier example, this

implies that the stride of the inner loop is adjusted to four times the size of one element.

When generating the SCEV for the transformed address, we first generate the SCEV for

the element’s block. The offset inside the block is added to the generated SCEV address

for the block.

The transformed address can be computed without changing the sizes of the dimensions

of the original matrix by distributing the blocks in each row of the transformed matrix

into two rows. However, this requires the size of the innermost dimension in the matrix

for the computation. Since we do not have a constant value for it at compile time, Scalar

Evolution generates a SCEVUDivExpr for it. Such expressions often give non-constant

differences when adding them into memory groups. Since our memory grouper only

works with constant differences we cannot use these SCEVs for our requirements.

5.3 Code Generation

The code generation phase uses tensor shapes and memory groups from the earlier phases

to generate vector code. Before generating code for the instructions in the loop body,

the loop increments and loop bounds for each loop dimension are adjusted based on the

tensor brush size in that dimension. We assume that all loop bounds are such that the

loop can be fully vectorized using the chosen vectorization layout and that there are no

remainder iterations left over after vectorization.
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For the instructions in the loop body, the code generator visits each instruction in a

reverse post-order and generates code for them. We assume that all instructions other

than memory accesses have no side-effects. For the next parts of this phase we distinguish

between memory access instructions and all other instructions. We first discuss code

generation for side-effects-free instructions and then memory access instructions.

5.3.1 Side-Effect-Free Instructions

The tensor shape plays an important role in the vectorization of these instructions.

Depending on the tensor shape, such instructions are handled as follows:

• All strided or strided and uniform: For strided instructions that have no

varying dimensions, we emit a scalar instruction to compute the value for the first

vector lane. When the instruction is being used by a vector instruction and a full

expansion is required, we first generate a stride vector of the same dimensions as

the tensor brush. The values of this vector are the increments for each coordinate

based on the stride value for that dimension in the tensor shape. We then generate

a vector with all its lanes having the computed scalar value. Finally, the stride

vector is added to this generated vector having the scalar value of the instruction

in all its lanes. If the stride is zero in all dimensions, we can skip generating and

adding the stride vector.

• Varying: If there are any varying dimensions in the tensor shape, we change

the data type of the instruction to a vector data type. The vector data type is

essentially a vector of the scalar type whose size is equal to the size of the projected

tensor brush. For example, a float scalar type with a tensor brush of 2× 4 would

give us a vector of type <8 x float>. The strided or uniform operands of this

instruction would also be expanded to vectors of the same size based on the brush

projection vector.

Our framework allows for tensor brushes that when projected, form vector operands

that are larger than the hardware vector registers. For example, a tensor brush of

2× 16 is projected to a single-dimensional vector of 32 elements. If the input data type

is double, on a AVX-512 system that supports up to eight elements of type double,

our tensor brush is four times as wide as a vector register. In such cases we rely on

LLVM’s legalization phase for register tiling. A single vector instruction that computes

a 32 elements wide vector, would be broken into four vector instructions, each computing

on vectors that are eight elements wide.
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5.3.2 Memory Access Instructions

The code for memory access instructions is also generated based on their tensor shape.

For instructions having all uniform dimensions, we emit a scalar memory instruction.

If the instruction is a load instruction and an expansion is needed, the code generator

copies the loaded value to all vector lanes. For instructions having varying dimensions,

we generate gather or scatter instructions based on whether they are load or store oper-

ations. For instructions having strided dimensions, the code generator uses the memory

groups from the memory access grouper to reduce memory operations as explained in

the following.

The code generator breaks down the memory groups into chunks that can be loaded

contiguously. The memory groups from the memory access grouper can be longer than

the width of vector registers and may have gaps. During the chunking phase, the memory

groups that are contiguous but wider than the vector registers are broken down into

parts that are within the vector register width. For memory groups that have gaps, the

chunking phase creates chunks of contiguous accesses.

0 1 2 3 4 5 6 7 8 9 10 11

(A)

0 1 2 3 4 5 6 7 8 9 10 11

(B)

Figure 5.3: Memory groups: contiguous (A), with gaps (B)

In Figure 5.3, we see two memory groups – the first having 12 contiguous elements

(Figure 5.3(A)) and the second having gaps (Figure 5.3(B)). If we assume the vector

registers to be eight elements wide, the chunking phase would divide the first group into

two chunks: [0, 7] and [8, 11]. For the second group, the chunking algorithm computes

three chunks: [0, 3], [5, 7] and [10, 11].

When generating code for a strided memory instruction, the code generator fetches the

SCEVs to vector lane mapping for the scalar memory address from the memory access

grouper. Depending on whether the instruction is a load or store operation, the code

generator proceeds as follows:

• Load instruction: For each vector lane, the code generator finds the chunk to

be loaded using the corresponding SCEVs. If the chunk has not been loaded yet,

it emits a vector load instruction for the chunk. Otherwise, it uses the existing

load instruction to generate a shuffle instruction for moving the element from the

register of the loaded chunk to the required operand register. Once all the elements
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have been mapped, the shuffle generator emits the required shuffle instructions for

the operand vector.

• Store instruction: For store instructions, the code generator generates shuffle

instructions to transfer elements from the result registers to the registers used for

the store operation. After the shuffle operation, it emits vector store instructions

to complete the operation.

In contrast to side-effects-free instructions, we ensure that the width of generated mem-

ory instructions are within the limits of vector register size using the chunking phase.

In this chapter we discussed the memory access grouper and the code generation phase of

our framework. The SCEV-based memory access grouping enables us to reduce memory

operations in every iteration of the vectorized code. In the next chapter we evaluate our

framework experimentally on different 2D stencils.





Chapter 6

Evaluation

In this chapter, we evaluate our framework experimentally on some commonly used

stencils from scientific applications. We compare the performance of different multi-

dimensional vectorization layouts to that of single-dimensional vectorization for different

data layouts.

6.1 Experimental Setup

We performed our experiments on an Intel i9-7900x CPU that supports AVX-512 vector

instructions. The CPU had 10 physical cores and three layers of cache memory (L1 :

640 KiB, L2 : 10 MiB, L3 : 13.75 MiB) with the last layer being shared between the

cores. For multi-core experiments, we deactivated hyperthreading and used OpenMP

for parallelization.

Our benchmarks are described as follows:

1. Jacobi: This is a cross shaped stencil that averages over the Von Neumann neigh-

borhood of an element. In Figure 6.1, we show the different versions of this stencil

that were used in our experiments. We added a 2D, 4th-order, 5-point version (5-

point, Sp-Jacobi) of this stencil to test our prototype on non-contiguous memory

access patterns.

(A) 2D, 2nd-order,
5-point

(B) 2D, 4th-order,
5-point

(C) 2D, 4th-order,
9-point

Figure 6.1: 2D and 3D Jacobi stencils that were used in our experiments
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2. Seidel: Unlike the Jacobi, this stencil averages over the Moore neighborhood of an

element. Figure 6.2 shows the different variations of the Seidel stencil used in our

experiments.

(A) 2D, 2nd-order,
9-point

(B) 2D, 4th-order,
25-point

Figure 6.2: 2D and 3D Seidel stencils that were used in our experiments

3. Matrix Transpose: The matrix transpose operation is a simple copy operation with

a permutation of the indices of the elements. It is different from stencil benchmarks

as it does not involve any computations.

We experimented with nine tensor brushes spread over vectorization widths of 8, 16 and

32. We used the default single-dimensional data layout and a data brush of 2×2 for the

stencils. We used only the default single-dimensional data layout for matrix transpose

as the operation itself is a layout transformation. Our input sizes for the single-core

experiments ranged from 128 KiB to 18 MiB and for multi-core experiments, the range

was between 2 MiB to 32 MiB.

6.2 Results

We measured the execution times of single-dimensional and multi-dimensional vectorized

code for all our benchmarks. We collected about 1683 scores over all our parameter

configurations and inputs for multi-dimensional vectorization. Each data point was

recorded by taking the median of 51 runs of the experiment. We computed speedup

scores for each experiment by taking the ratio between the execution times of single-

dimensional and multi-dimensional vectorized code.

In Figure 6.3(A) we show the frequency distribution of the speedups over single-dimensional

vectorization for all benchmarks. Most values lie within 0.0 to 2.0 with the rest being

distributed between 2.0 to 24.0. We show the distribution without the matrix transpose

experiment in Figure 6.3(B). We see that the performance of the stencils is distributed

more between 0.3 to 1.0 than 1.0 and 2.0. This indicates that overall we have more

slowdowns than speedups in the stencil experiments. We also note that the speedup

values higher than 2.0 are from the matrix transpose experiments.
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Figure 6.3: Frequency distribution of speedups over single-dimensional vectorized
code

We further divide our stencil experiments into two parts: single-core and multi-core

experiments. In Figure 6.4, we see the frequency distribution for each of them.

We see that the single-core values are spread wider than the multi-core ones. Also, the

distribution is more evenly distributed around 1.0 in multi-core than single-core. There

are more slowdowns than speedups in the single-core experiments.
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Figure 6.4: Frequency distribution of speedups over single-dimensional vectorized
code for single-core and multi-core experiments on 2D stencils

In the following sections we discuss the effects of the different parameters that we used

in our configurations.
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6.2.1 Data Layout Transformations

We examine the influence of data layout transformations for single-core and multi-core

experiments separately. We compare the frequency distribution of the individual data

layouts with the distribution of all single-core and multi-core configurations. We show

the frequency distribution for the different data layouts along with the frequency distri-

bution for single-core and multi-core experiments in Figure 6.5(A) and 6.5(B).

0.5 1 1.5 2

0

20

40

60

80

100

120

Speedup

F
re
q
u
en

cy

All Config.

1 × 1

2 × 2

(A) Single-core Experiments

0.6 0.8 1 1.2 1.4

0

10

20

30

40

50

Speedup

All Config.

1 × 1

2 × 2

(B) Multi-core Experiments

Figure 6.5: Frequency distribution of speedups over single-dimensional vectorized
code for different data layouts

In the multi-core experiments graph, we see that the 2× 2 data layout’s distribution is

larger in the zone between 1.0 and 1.5 whereas the 1 × 1 layout’s distributions is more

between 0.6 and 1.0. This indicates that for multi-core experiments, a data layout of

2× 2 performs better than a data layout of 1× 1.

In the case of single-core experiments, we notice that the 2×2 data layout’s distribution

is concentrated around 1.0 with a longer spread towards 0.3 than 1.5. This indicates that

the performance is mostly comparable to that of single-dimensional vectorization but the

slowdowns can go below 0.5 while the speedups are less than 1.5 times. The 1×1 layout

has more values in the range between 0.5 to 1.0. This indicates that the performance is

worse than single-dimensional vectorization in most single-core experiments.

6.2.2 Tensor Brush

We split our tensor brushes into three parts based on how their sizes were distributed

between the two loop dimensions. For each set, we plot the distribution for single-core

and multi-core experiments and overlay them with the performance distribution for the



Chapter 6. Evaluation 35

respective set. We also add a third layer for the configurations that include these tensor

brush subsets with a data layout of 2× 2.

• Brush Inner (BrIn): This set consists of brushes that have larger sizes in the

innermost dimension: 2× 4, 2× 8, 2× 16. In Figure 6.6, we see how the speedup

values are distributed for them.

For both single-core and multi-core experiments, we see that the speedup values of

the experiments performed using these brushes lie close to 1.0 with the single-core

experiments leaning more towards slowdowns. With a data layout of 2 × 2, we

notice that most values lie above 1.0 in the multi-core experiments. The single-

core experiments distribution remains centered around 1.0 even with a 2× 2 data

layout.
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Figure 6.6: Frequency distribution of speedups over single-dimensional vectorized
code for tensor brushes having larger sizes in the inner loop dimension

• Brush Outer (BrOut): This set consists of brushes that have larger sizes in the

outermost dimension: 4× 2, 8× 2, 16× 2. In Figure 6.7, we show the distribution

of speedup values for this brush set.

For this set, we see more speedup values in the region below 1.0 for both single-

core and multicore experiments. This indicates that we have more slowdowns.

However, for the experiments with a 2 × 2 data layout, we that the distribution

shifts towards higher speedup values. It implies that most of the lower performance

values come from the 1× 1 data layout.

• Brush Middle (BrMid):This set consists of tensor brushes that have somewhat

even size in both inner and outer dimensions: 4 × 4, 4 × 8, 8 × 4. We show the

performance distribution for this set in Figure 6.8.
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Figure 6.7: Frequency distribution of speedups over single-dimensional vectorized
code for tensor brushes having larger sizes in the outer loop dimension

The speedup values of the single-core experiments are concentrated around 1.0

while those of multi-core experiments are mostly between 0.8 and 1.0. We can

also see that the highest speedup value in single-core experiments comes from this

brush set. The distribution shows that for multi-core experiments, these brushes

lead to more slow downs than BrIn but less than BrOut.
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Figure 6.8: Frequency distribution of speedups over single-dimensional vectorized
code for tensor brushes having even sizes in inner and outer dimensions

In the experiments with a 2× 2 data layout, we see that the distribution shifts to-

wards higher speedup values for both single-core and multi-core experiments. This

shows that similar to the BrOut set, the 2× 2 data layout improves performance

for the configurations that use brushes from this set.
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6.2.3 Input Size

We evaluate the effect of the size of the input matrix by selecting three different input

sizes for both single-core and multi-core experiments and observing the distribution of

speedup values. According to our hypothesis, with the increase in size of input, the

variation in the speedup values must increase. For single-core experiments, we selected

input sizes: 1.125 MiB, 6.125 MiB, 15.125 MiB. For multi-core we selected input sizes:

4.5 MiB, 18.0 MiB, 24.5 MiB.
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Figure 6.9: Frequency distribution of speedups over single-dimensional vectorized
code for different input sizes

In Figure 6.9, we see the distribution of speedup values over different input sizes for

single-core and multi-core experiments. The variation in the speedup values does not

change with the change in input sizes. We cannot distinguish between the three distri-

butions. Therefore, our hypothesis is unfounded in this case.

6.2.4 Stencil Pattern

In Table 6.1, we show the best performing configurations for single-core and multi-core

experiments for a 1× 1 data layout. We computed the speedup values for the table by

averaging over all input sizes.

We see that for single core experiments, all stencils perform best with a tensor brush

layout of 4×8 or 4×4. This is because the increase of the tensor brush size in the outer

dimension, increases the number of memory accesses needed per iteration. On the other

hand, if we have a larger tensor brush size in the inner dimension, we perform more

iterations of the outer loop. A balanced tensor brush performs best in such situations.



Chapter 6. Evaluation 38

We also note that for the 5-point Jacobi and 5-point Sp-Jacobi stencils, the speedup

values are below 1.0 which indicates that multi-dimensional vectorization of these stencils

leads to slower performance. The speedup values are correlated with the number of

points in the stencils. With the increase in the number of points we see an increase in

the speedup values.

Stencil
Single Core Multi Core

T. Brush Speedup T. Brush Speedup

5-pt, Jacobi 4× 8 0.97 2× 4 0.99
9-pt, Seidel 4× 4 1.02 2× 16 0.99
5-pt, Sp-Jacobi 4× 4 0.98 2× 8 0.98
9-pt, Jacobi 4× 8 1.04 2× 4 0.99
25-pt, Seidel 4× 8 1.37 2× 16 1.01

Table 6.1: Best performing configurations for 2D stencils for single-core and multi-
core experiments for a 1× 1 data layout

In multi-core experiments, we see that all stencils have tensor brushes that have larger

sizes in the inner dimension. We can also see that the speedup values are within 0.98 to

1.01. This indicates that multi-dimensional vectorization does not improve performance

in our multi-core experiments with a 1× 1 data layout.

In Table 6.2, we show the best performing configurations for single-core and multi-core

experiments for a 2× 2 data layout. Similar to the 1× 1 data layout table, the speedup

values were computed by averaging over all input sizes.

Stencil
Single Core Multi Core

T. Brush Speedup T. Brush Speedup

5-pt, Jacobi 16× 2 1.14 16× 2 1.30
9-pt, Seidel 4× 8 1.00 16× 2 1.20
5-pt, Sp-Jacobi 16× 2 1.20 16× 2 1.26
9-pt, Jacobi 8× 4 1.16 16× 2 1.24
25-pt, Seidel 4× 8 1.16 4× 8 1.10

Table 6.2: Best performing configurations for 2D stencils for single-core and multi-
core experiments for a 2× 2 data layout

In single-core experiments, we see that the 5-point Jacobi and 5-point Sp-Jacobi stencils

perform best with a 16×2 tensor brush. Compared to the 1×1 data layout, the speedup

values are better for all the Jacobi stencils and worse for the two Seidel stencils.

In multi-core experiments, we see that except for the 25-point Seidel stencil, all other

stencils perform best with a 16× 2 tensor brush. We see an inverse correlation between

the speedup values and the number of points in the stencil in this case. With the increase

in the number of points in the stencil, we see a decrease in the speedup values.
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6.2.5 Matrix Transpose

In Figure 6.10, we show the impact of input size on the execution time of the matrix

transpose benchmark for different tensor brushes. The single-dimensional vectorization

brush is labeled as 1× 32.
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Figure 6.10: Impact of input size on execution time of the matrix transpose bench-
mark

In single-core experiments, we see that with the increase of input size the execution

time increases for all tensor brushes. However, as the brush layout moves from 1 × 32

to 16× 2, the slope of the curve decreases. This indicates that the tensor brushes with

larger sizes in the outer loop dimension are less sensitive to the increase in input size.

The curves for brushes 8× 4 and 16× 2 overlap each other.

In multi-core experiments, we see that there is very little increase in execution time for

the brushes 8 × 4 and 16 × 2. After the 25 MiB mark, we see a sharp increase in the

slope of the curve for the single-dimensional vectorization layout. Once again, we can

see that the slope of the curve decreases as we increase the size of the outer dimension

and reduce the size of the inner dimension of our tensor brush.

6.3 Discussion

Based on our observations, we distinguish between the different choices of tensor brushes

and data layouts based on whether we are executing the stencil on a single-core or multi-

core system. In the following paragraphs we discuss both scenarios.
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Stencil
Single Core Multi Core

D. Brush T. Brush Speedup D. Brush T. Brush Speedup

5-pt, Jacobi 2× 2 16× 2 1.14 2× 2 16× 2 1.30
9-pt, Seidel 1× 1 4× 4 1.02 2× 2 16× 2 1.20
5-pt, Sp-Jacobi 2× 2 16× 2 1.20 2× 2 16× 2 1.26
9-pt, Jacobi 2× 2 8× 4 1.16 2× 2 16× 2 1.24
25-pt, Seidel 1× 1 4× 8 1.37 2× 2 4× 8 1.10
Transpose 1× 1 8× 2 3.58 1× 1 16× 2 7.48

Table 6.3: Best performing configurations for 2D benchmarks for single-core and
multi-core experiments

In single-core experiments, the stencils with more number of points – the Seidel stencils,

performed better with a 1 × 1 layout. This is due to the higher overlap between the

neighboring elements of these stencils. In contrast, the Jacobi stencils which have less

points for the same order did not gain anything from multi-dimensional vectorization

with a 1× 1 layout. However, with a 2× 2 layout that reduces memory accesses, we see

an increase in speedups for Jacobi stencils. For the performance of the Seidel stencils,

the reduction in the memory accesses from a 2× 2 data layout is not influential. Due to

the higher number of points in these stencils, their performance is influenced more by

the number of computations per iteration than the number of memory accesses.

In general, we see that multi-core experiments on stencils perform better with a 2×2 data

layout. This was expected because multi-core execution shares the last level of cache

and it would benefit from a data layout of 2× 2 which reduces memory operations.

We have also seen that tensor brushes that have larger sizes in the outer loop dimension,

perform better with a 2×2 data layout. This is because these tensor brushes load only 2

values contiguously in a 1× 1 layout. This leads to more memory accesses per iteration.

In contrast, a data layout of 2 × 2 reduces the number of required memory accesses to

half of the earlier amount as it doubles the number of elements loaded contiguously. The

advantage of these brushes is that they reduce the number of outer loop iterations which

are relatively more expensive. However, in a 1 × 1 layout, the cost of memory accesses

per iteration slows down their performance. For stencils like Jacobi, that are influenced

more by the memory accesses, these tensor brushes give the best performance with a

2× 2 data layout.

In the matrix transpose, we see a similar gain in speedup when increasing the size of

the tensor brush in the outer dimension. In Table 6.3 we see that the best performing

tensor brush layouts for matrix transpose are 8× 2 and 16× 2.
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Related Work

The idea of multi-dimensional loop vectorization can be traced back to Allen and

Kennedy’s work on the Parallel Fortran Compiler [10]. As a source to source translator,

their framework would analyze loop nests for data dependencies and vectorize indepen-

dent inner loops to generate multi-dimensional Fortran 8x [11] code. In contrast, our

framework deals with LLVM IR and can be used for different source languages.

Since most modern systems have single-dimensional memory, even contiguous accesses

in higher dimensions lead to strided memory accesses that require gather and scatter

instructions. Such instructions are not as efficient as contiguous vector memory access

instructions and can be detrimental to performance in multi-dimensional vectorization.

This was addressed in Vector Folding [8] by performing data layout transformations as a

preprocessing step before multi-dimensional vectorization. Data layout transformations

have also been used [12] to reduce shuffle operations induced by unaligned memory

accesses. However, there is an associated cost of transforming the data layout both

before and after the execution of the stencil kernel code. Depending on the stencil

pattern, vectorization layout and hardware platform, data layout transformations can

increase or decrease throughput. In our approach, we group memory accesses and use

shuffles with contiguous loads to generate operand vectors [13, 14]. We do this with the

default data layout as well as with transformed data layouts.

For loop nests with short trip counts, single-dimensional vectorization leads to under-

utilization of available SIMD lanes. Rodrigues et al. [15] showed that multi-dimensional

vectorization enables efficient vector register utilization in such cases. However, their

compiler requires a high-level specification of the tensor operation algorithm and needs

contiguous memory accesses without gaps. Our framework uses scalar code as input and

can handle non-constant strides. There is limited support for multi-dimensional vector-

ization in the ISPC programming language [16] through the foreach_tiled statement.

However, lacking a multi-dimensional analysis, ISPC will use scatter/gather to vectorize

every memory access that is not fully uniform in that mode.

41
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Our approach is orthogonal to spatio-temporal tiling approaches [17, 18] in the sense

that the generated tiles may still be processed by multi-dimensional vector code.

Optimization of stencil codes on SIMD hardware is an active area of research and various

manual [19] and automatic [15, 20] vectorization techniques have been developed to

improve throughput. Such applications are well suited to optimization techniques that

reorder computations to improve register reuse [21] and increase arithmetic intensity.

Kong et al. [22] have shown that register tiling [23–25] is useful for exploiting multi-

dimensional data reuse. For certain combinations of vectorization layout and hardware

platform, our framework generates register tiled code. However, if the register pressure

is high, our framework uses smaller vectorization layouts and shuffles elements between

registers to build operand vectors.

The multi-dimensional vectorization analysis is an extension of divergence analysis [1, 2].

The strides in the vector shapes are comparable to affine constraints in some, one-

dimensional, divergence analysis lattices [1, 9].

A part of this work has already been published as Tensorization [3] of loop nests. In that

work, we limited our framework to the default data layout in memory. Our experiments

were also restricted to single core execution of 2D stencils. In this work, we further

extend our framework to handle transformed data layouts and conduct single core and

multi core experiments on 2D stencils.
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Conclusion

In this thesis we have developed a framework that analyzes scalar code for stencil pat-

terns and generates efficient vectorized code by reducing memory operations. The frame-

work groups contiguous memory accesses together to substitute multiple scalar memory

operations by fast contiguous vector memory operations. This requires additional shuf-

fle operations to build operand vectors for the computations which increases register

usage. A key limitation of this approach is that it depends on the regular grid-like

memory access pattern in stencil codes to compute memory groups that can be loaded

contiguously.

Our framework performs multi-dimensional loop vectorization in three phases. The ten-

sor shape analysis phase of the framework computes the memory access pattern across

loop iterations that are vectorized into a single vector loop iteration. The memory

grouping phase uses LLVM’s Scalar Evolution analysis to detect the memory access pat-

tern within the same loop iteration. Further, it also generates SCEV representations for

neighboring memory addresses and groups them together. Finally, the code generation

phase generates vector code using the memory groups and tensor shapes.

Unlike existing techniques, our framework does not limit itself to processing vectorization

layouts that are at least as wide as the vector registers in the innermost dimension. It

also does not require the size of the memory blocks in the transformed data layouts to

be equal to the width of vector registers. However, it assumes that the loop bounds are

such that the loop can be fully vectorized. It requires a vectorization layout and a data

layout as input from the programmer together with the scalar code.

Our experiments show that with the right parameter configurations, the generated vector

code can improve performance by up to 90% for stencil applications. However, we

also note that wrong parameter configurations can lead to significant slowdowns. We

discussed the influence of different parameters on performance. We found that for multi-

core experiments, a multi-dimensional data layout performs better than the default
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single-dimensional layout. For single-core experiments we observed that the choice of a

good tensor brush depends mainly on the number of points in the stencil and the data

layout of the inputs.

8.1 Future Work

Our framework needs a cost model to be completely automatic. Currently, it relies on

the programmer to provide an efficient vectorization and data layout for the input code.

The framework analyzes the properties of the stencil pattern. This information can be

combined with the heuristics from our experiments to build a cost model.

The code generator is designed for the AVX-512 instruction set. If possible, it replaces

memory operations by register local shuffle operations because they are faster. For

systems that do not support fast register shuffle operations this code generator would

not generate efficient code. It could be extended to other hardware platforms like GPUs

that have large memory latencies and would benefit from this approach.
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J. Ramanujam, and P. Sadayappan. A framework for enhancing data reuse via

associative reordering. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,

2014, pages 65–76, 2014. doi: 10.1145/2594291.2594342. URL https://doi.org/

10.1145/2594291.2594342.

[22] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël Pouchet,
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